Supporting information

Scheme S1

Figure S1. I.R. spectra of (a) **1**, (b) **2** and (c) **3**.

Figure S2. DTA-TG curves for (a) 1, (b) 2 and (c) 3.

Figure S3 (a) Assembly of crystal structures from the transition metal-ptc compounds and 1;(b) The evolving of crystal structures for the transition metal-ptc compounds; (c) The metal oxide unit in the transition metal hydroxo ptc complexes.

Scheme S1

Mn1–O1	2.291(3)	Mn2–O2	2.140(3)	Mn3–O3	2.123(3)
Mn1–O6	2.258(3)	Mn2–O7	2.331(3)	$Mn3-O5^{#1}$	2.188(3)
Mn1–O11 ^{#2}	2.229(3)	Mn2–O12	2.474(4)	Mn3–O18	2.204(3)
Mn1–O12 ^{#2}	2.458(3)	Mn2-O15	2.226(3)	Mn3–O19	2.140(3)
Mn1–O13	2.215(3)	Mn2-O16	2.369(4)	Mn3–O20	2.195(3)
Mn1–O14	2.208(3)	Mn2017	2.143(3)	Mn3–O21	2.194(3)
Mn1–N1	2.214(3)	Mn2–N2	2.299(3)		
O1-Mn1-O6	144.4(1)	O13-Mn1-N1	99.2(1)	O15-Mn2-N2	91.6(1)
O1–Mn1–O11 ^{#2}	77.5(1)	O14–Mn1–N1	91.8(1)	O16-Mn2-O17	106.2(1)
O1–Mn1–O12 ^{#2}	132.9(1)	O2–Mn2–O7	94.2(1)	O16-Mn2-N2	118.6(1)
O1-Mn1-O13	99.1(1)	O2-Mn2-O12	128.3(1)	O17-Mn2-N2	98.1(1)
O1-Mn1-O14	91.2(1)	O2-Mn2-O15	88.3(1)	O3–Mn3–O5 ^{#1}	164.5(1)
O1–Mn1–N1	70.4(1)	O2-Mn2-O16	78.0(1)	O3-Mn3-O18	90.7(1)
O6-Mn1-O11 ^{#2}	141.0(1)	O2-Mn2-O17	79.9(1)	O3-Mn3-O19	85.8(1)
O6-Mn1-O12 ^{#2}	85.7(1)	O2-Mn2-N2	162.9(1)	O3-Mn3-O20	101.2(1)
O6-Mn1-O13	86.2(1)	O7-Mn2-O12	133.4(1)	O3-Mn3-O21	97.0(1)
O6-Mn1-O14	90.8(1)	O7-Mn2-O15	80.7(1)	O5 ^{#1} –Mn3–O18	79.5(1)
O6–Mn1–N1	71.1(1)	O7-Mn2-O16	155.4(1)	O5 ^{#1} –Mn3–O19	84.3(1)
O11 ^{#2} –Mn1–O12 ^{#2}	55.4(1)	O7-Mn2-O17	95.1(1)	O5 ^{#1} –Mn3–O20	90.8(1)
O11 ^{#2} –Mn1–O13	86.0(1)	O7–Mn2–N2	69.0(1)	O5 ^{#1} -Mn3-O21	94.0(1)
O11 ^{#2} –Mn1–O14	88.4(1)	O12-Mn2-O15	114.2(1)	O18-Mn3-O19	100.9(1)
O11 ^{#2} –Mn1–N1	147.9(1)	O12-Mn2-O16	65.0(1)	O18-Mn3-O20	164.4(1)
O12 ^{#2} -Mn1-O13	78.6(1)	O12-Mn2-O17	77.5(1)	O18-Mn3-O21	84.3(1)
O12 ^{#2} -Mn1-O14	88.5(1)	O12-Mn2-N2	66.9(1)	O19-Mn3-O20	90.1(1)
O12 ^{#2} -Mn1-N1	156.8(1)	O15-Mn2-O16	75.9(1)	O19-Mn3-O21	174.2(1)
O13-Mn1-O14	167.0(1)	O15-Mn2-O17	167.2(1)	O20-Mn3-O21	84.4(1)

Table S1a. Selected Interatomic Distances (Å) and Bond Angles (deg) for $\mathbf{1}^{a}$

Symmetry transformations used to generate equivalent atoms: #1 = x-1/2, -y+1/2, z-1/2; #2 = x+1/2, -y+1/2, z+1/2

D–H…A	d(D–H)	d(H···A)	∠DHA	d(D····A)
O13–H13A…O8 ^{#3}	0.85	1.91	154	2.699
O13–H13B…O4 ^{#4}	0.74	2.18	158	2.878
O14–H14A…O9 ^{#5}	0.82	1.95	171	2.756
O14–H14B…O3 ^{#6}	0.76	2.24	163	2.977
O15–H15A…O9 ^{#5}	0.81	2.00	167	2.796
O15–H15B…O5 ^{#7}	0.86	2.08	150	2.860
O16–H16A…O12	0.82	2.15	115	2.604
O16–H16A…O13 ^{#1}	0.82	2.31	149	3.045
O16–H16B…O10 ^{#5}	0.85	1.93	166	2.754
O17–H17A…O10 ^{#3}	0.86	2.09	153	2.879
O17–H17B…O4 ^{#8}	0.82	2.01	151	2.753
O18–H18A…O1 ^{#9}	0.77	2.14	152	2.842
O18–H18B…O7 ^{#9}	0.81	2.06	163	2.843
O19–H19A…O11 ^{#3}	0.79	1.97	166	2.741
O19–H19A…O1 ^{#10}	0.79	2.59	118	3.039
O19–H19B…O7 ^{#10}	0.85	2.06	168	2.897
O20–H20A…O6 ^{#1}	0.77	2.21	136	2.813
O20–H20B…O10 ^{#3}	0.78	2.08	167	2.842
O21-H21A…O16	0.78	2.12	165	2.884
O21–H21B…O8 ^{#9}	0.75	2.13	157	2.833

Table S1b. Selected hydrogen bond for $\mathbf{1}^{a}$

Symmetry transformations used to generate equivalent atoms: #1 = x-1/2, -y+1/2, z-1/2; #2 = x+1/2, -y+1/2, z+1/2; #3 = x, -y, z+1/2; #4 = x+1/2, y-1/2, z; #5 = x, -y+1, z+1/2; #6 = x+1/2, y+1/2, z; #7 = x, -y+1, z-1/2; #8 = x, -y, z-1/2; #9 = x-1/2, y+1/2, z; #10 = x-1/2, y-1/2, z

Co101	2.206(2)	Co1–N	2.017(2)	Co2–O4 ^{#4}	2.012(2)	
Co1–O1 ^{#1}	2.206(2)	Co1–N ^{#1}	2.017(2)	Co2–O5	2.124(2)	
Co1–O6	2.103(2)	Co2–O1 ^{#2}	2.186(2)	Co2–O7	2.158(2)	
Co1-O6 ^{#1}	2.103(2)	Co2–O3 ^{#3}	2.083(2)	Co2–O7 ^{#5}	2.188(2)	
O1-Co1-O1 ^{#1}	101.5(1)	O6-Co1-O6 ^{#1}	84.8(1)	O3 ^{#3} -Co2-O4 ^{#4}	84.1(1)	
O1–Co1–O6	152.0(1)	O6-Co1-N	76.7(1)	O3 ^{#3} –Co2–O5	94.3(1)	
O1–Co1–O6 ^{#1}	93.0(1)	O6–Co1–N ^{#1}	95.5(1)	O3 ^{#3} –Co2–O7	92.1(1)	
O1–Co1–N	75.7(1)	O6 ^{#1} -Co1-N	95.5(1)	O3 ^{#3} –Co2–O7 ^{#5}	90.0(1)	
O1-Co1-N ^{#1}	111.2(1)	O6 ^{#1} -Co1-N ^{#1}	76.7(1)	O4 ^{#4} -Co2-O5	89.4(1)	
O1 ^{#1} -Co1-O6	93.0(1)	O1 ^{#2} -Co2-O3 ^{#3}	173.0(1)	O4 ^{#4} -Co2-O7	176.1(1)	
O1 ^{#1} -Co1-O6 ^{#1}	152.0(1)	O1 ^{#2} -Co2-O4 ^{#4}	93.5(1)	O4 ^{#4} -Co2-O7 ^{#5}	91.0(1)	
O1 ^{#1} -Co1-N	111.2(1)	O1 ^{#2} –Co2–O5	92.2(1)	O5–Co2–O7	89.9(1)	
O1 ^{#1} -Co1-N ^{#1}	75.7(1)	O1 ^{#2} -Co2-O7	90.4(1)	O5–Co2–O7 ^{#5}	94.3(1)	
O1–Co1–O6	101.5(1)	O1 ^{#2} -Co2-O7 ^{#5}	83.5(1)	O7–Co2–O7 ^{#5}	90.0(1)	
Hydrogen bonding contacts						
D–H···A	d(D–H	$d(H \cdots A)$) ∠DH	A d(D··	·A)	
O7–H7A…O2 ^{#2}	0.80	1.89	157	2.643	3	
O7–H7B…O6	0.83	1.83	150	2.575	5	

Table S2. Selected Interatomic Distances (Å) and Bond Angles (deg) for 2^{a}

Symmetry transformations used to generate equivalent atoms: #1 = -x, y, -z+3/2; #2 = -x, y+1, -z+3/2; #3 = x-1/2, -y+3/2, -z+2; #4 = -x, -y+2, -z+2; #5 = -x-1/2, y+1/2, z; #6 = -x, y-1, -z+3/2; #7 = x+1/2, -y+3/2, -z+2; #8 = -x-1/2, y-1/2, z

Co1-O1	2.104(2)	Co1–O7	2.152(3)	Co2-O9	2,140(2)
$Co1-O3^{\#1}$	2.329(2)	Co1–N1	2.049(2)	Co2–O9 ^{#5}	2.140(2)
$Co1-O3^{#2}$	2.046(2)	Co2–O8	2.060(2)	Co2–ON	2.130(1)
Co1–O6	2.113(2)	$C_{0}2-O8^{\#5}$	2.060(2)	$Co2-ON^{\#5}$	2.130(1)
001 00	2.110(2)		2.000(2)	002 011	2.120(1)
O1–Co1–O3 ^{#1}	84.3(1)	O3 ^{#2} -Co1-O7	93.9(1)	O8 ^{#5} –Co2–O9	90.3(1)
O1–Co1–O3 ^{#2}	105.3(1)	O3 ^{#2} -Co1-N1	178.4(1)	O8 ^{#5} -Co2-O9 ^{#5}	⁵ 89.7(1)
O1–Co1–O6	149.4(1)	O6-Co1-O7	97.4(1)	O8 ^{#5} -Co2-N2	89.0(1)
O1–Co1–O7	90.5(1)	O6-Co1-N1	75.1(1)	O8 ^{#5} -Co2-N2 ^{#5}	⁵ 91.0(1)
O1-Co1-N1	75.7(1)	O7-Co1-N1	87.3(1)	O9–Co2–O9 ^{#5}	180.0(1)
O3 ^{#1} -Co1-O3 ^{#2}	77.9(1)	O8–Co2–O8 ^{#5}	180.0	O9-Co2-N2	90.8(1)
O3 ^{#1} -Co1-O6	92.1(1)	O8–Co2–O9	89.7(1)	O9–Co2–N2 ^{#5}	89.2(1)
O3 ^{#1} –Co1–O7	168.7(1)	O8–Co2–O9 ^{#5}	90.3(1)	O9 ^{#5} -Co2-N2	89.2(1)
O3 ^{#1} -Co1-N1	101.1(1)	O8–Co2–N2	91.0(1)	O9 ^{#5} –Co2–N2 ^{#5}	⁵ 90.8(1)
O3 ^{#2} -Co1-O6	103.6(1)	O8-Co2-N2 ^{#5}	89.0(1)	N2-Co2-N2 ^{#5}	180.0(1)
Hydrogen bonding contacts					
D–H···A	d(D–H)	d(H····A)	∠Ľ	DHA d(D···A)	
O7–H7A…O4 ^{#8}	0.85	2.03	160	6 2.865	
O7–H7B…O3 ^{#2}	0.86	2.21	180) 3.069	
O7–H7B…O4 ^{#2}	0.86	2.36	122	2 2.902	
O8–H8A…O6 ^{#8}	0.85	1.83	172	2.671	
O8–H8B…O1 ^{#9}	0.85	1.85	168	8 2.6	581
O9–H9C…O5 ^{#10}	0.85	1.94	173	3 2.7	'80
O9–H9B…O2 ^{#9}	0.85	1.96	172	2 2.8	800

Table S3. Selected Interatomic Distances (Å) and Bond Angles (deg) for 3^a

Symmetry transformations used to generate equivalent atoms: #1 = -x+2, -y+1, -z+2; #2 = x, y+1, z; #3 = x, y-1, z; #4 = -x+2, -y+2, -z+2; #5 = -x+1, -y, -z+1; #6 = -x, -y+1, -z+1; #7 = x-1, y+1, z; #8 = -x+1, -y+1, -z+2; #9 = x-1, y-1, z; #10 = x, y-1, z-1

Figure S1. I.R spectra of (a) **1**, (b) **2** and (c) **3**.

Figure S3a. Assembly of crystal structures from the transition metal-ptc compounds and 1.

Figure S3b. The evolving of crystal structures for the transition metal-ptc compounds.

Figure S3c. The metal oxide unit in the transition metal hydroxo ptc complexes.