New solid forms of artemisinin obtained through cocrystallisation

Supplementary Material

Shyam Karki,^a Tomislav Friščić,^a Lászlo Fábián^b and William Jones^{a,*}

Figure S1	PXRD patterns for cocrystallisation of art and nicotinamide	4
Figure S2	PXRD patterns for cocrystallisation of art and ascorbic acid	4
Figure S3	PXRD patterns for cocrystallisation of art and urea	5
Figure S4	PXRD patterns for cocrystallisation of art and tromethamine	5
Figure S5	PXRD patterns for cocrystallisation of art and theophylline-7-	6
_	acetic acid	
Figure S6	PXRD patterns for cocrystallisation of art and theophylline	6
Figure S7	PXRD patterns for cocrystallisation of art and theobromine	7
Figure S8	PXRD patterns for cocrystallisation of art and sulfamide	7
Figure S9	PXRD patterns for cocrystallisation of art and sucrose	8
Figure S10	PXRD patterns for cocrystallisation of art and sorbitol	8
Figure S11	PXRD patterns for cocrystallisation of art and saccharin	9
Figure S12	PXRD patterns for cocrystallisation of art and res	9
Figure S13	PXRD patterns for cocrystallisation of art and pyridoxine	10
Figure S14	PXRD patterns for cocrystallisation of art and phloroglucinol	10
Figure S15	PXRD patterns for cocrystallisation of art and paracetamol	11
Figure S16	PXRD patterns for cocrystallisation of art and orc	11
Figure S17	PXRD patterns for cocrystallisation of art and N-	12
	methylglucosamine	
Figure S18	PXRD patterns for cocrystallisation of art and	12
	methanesulfonic acid	
Figure S19	PXRD patterns for cocrystallisation of art and D-mannitol	13
Figure S20	PXRD patterns for cocrystallisation of art and malonic acid	13

Figure S21	PXRD patterns for cocrystallisation of art and maleic acid	14
Figure S22	PXRD patterns for cocrystallisation of art and L-lysine	14
Figure S23	PXRD patterns for cocrystallisation of art and L-tartaric acid	15
Figure S24	PXRD patterns for cocrystallisation of art and L-	15
0	phenylalanine	
Figure S25	PXRD patterns for cocrystallisation of art and L-mandelic	16
0	acid	
Figure S26	PXRD patterns for cocrystallisation of art and L-malic acid	16
Figure S27	PXRD patterns for cocrystallisation of art and lactobionic	17
0	acid	
Figure S28	PXRD patterns for cocrystallisation of art and lactic acid	17
Figure S29	PXRD patterns for cocrystallisation of art and RS-ibuprofen	18
Figure S30	PXRD patterns for cocrystallisation of art and hydroquinone	18
Figure S31	PXRD patterns for cocrystallisation of art and hippuric acid	19
Figure S32	PXRD patterns for cocrystallisation of art and 4-	19
6	hexylresorcinol	
Figure S33	PXRD patterns for cocrystallisation of art and glycolic acid	20
Figure S34	PXRD patterns for cocrystallisation of art and glycine	20
Figure S35	PXRD patterns for cocrystallisation of art and L-glutamine	21
Figure S36	PXRD patterns for cocrystallisation of art and D-glucose	21
Figure S37	PXRD patterns for cocrystallisation of art and gentisic acid	22
Figure S38	PXRD patterns for cocrystallisation of art and γ -cyclodextrin	22
Figure S39	PXRD patterns for cocrystallisation of art and galacturonic	23
	acid	
Figure S40	PXRD patterns for cocrystallisation of art and fumaric acid	23
Figure S41	PXRD patterns for cocrystallisation of art and D-fructose	24
Figure S42	PXRD patterns for cocrystallisation of art and	24
8	ethylenediamine	
Figure S43	PXRD patterns for cocrystallisation of art and ethanolamine	25
Figure S44	PXRD patterns for cocrystallisation of art and	25
0	ethanedisulfonic acid	
Figure S45	PXRD patterns for cocrystallisation of art and DL-tartaric	26
0	acid	
Figure S46	PXRD patterns for cocrystallisation of art and DL-	26
	phenylalanine	
Figure S47	PXRD patterns for cocrystallisation of art and DL-mandelic	27
	acid	
Figure S48	PXRD patterns for cocrystallisation of art and DL-malic acid	27
Figure S49	PXRD patterns for cocrystallisation of art and DL-alanine	28
Figure S50	PXRD patterns for cocrystallisation of art and D-glucuronic	28
	acid	
Figure S51	PXRD patterns for cocrystallisation of art and S-cysteine	29
Figure S52	PXRD patterns for cocrystallisation of art and cyanuric acid	29
Figure S53	PXRD patterns for cocrystallisation of art and citric acid	30
Figure S54	PXRD patterns for cocrystallisation of art and L-serine	30
Figure S55	PXRD patterns for cocrystallisation of art and camphor-10-	31
	sulfonic acid	
Figure S56	PXRD patterns for cocrystallisation of art and caffeine	31
Figure S57	PXRD patterns for cocrystallisation of art and β -D-lactose	32

Figure S58	PXRD patterns for cocrystallisation of art and β -cyclodextrin	32			
Figure S59	Figure S59 PXRD patterns for cocrystallisation of art and				
	benzenesulfonic acid				
Figure S60	PXRD patterns for cocrystallisation of art and L-aspartic acid	33			
Figure S61PXRD patterns for cocrystallisation of art and L-arginine					
Figure S62	Figure S62 PXRD patterns for cocrystallisation of art and α-cyclodextrin				
Figure S63PXRD patterns for cocrystallisation of art and acetic acid					
Figure S64	Figure S64 PXRD patterns for cocrystallisation of art and 5-				
	aminosalicylic acid				
Figure S65	PXRD patterns for cocrystallisation of art and 3-ap	36			
Figure S66	PXRD patterns for cocrystallisation of art and 1,3-	36			
	diaminobenzoic acid				
Figure S67	PXRD patterns for cocrystallisation of art and benzoic acid	37			
Figure S68	PXRD patterns for cocrystallisation of art and 1,3-pda	37			
Figure S69	PXRD patterns for cocrystallisation of art and 1,3-	38			
	dihydroxynaphthalene				
Figure S70	PXRD patterns for cocrystallisation of art and olivetol	38			
Figure S71	PXRD patterns for cocrystallisation of art and orotic acid	39			
Figure S72	PXRD patterns for cocrystallisation of art and piperazine	39			
Figure S73	PXRD patterns for cocrystallisation of art and L-tyrosine	40			
Figure S74	PXRD patterns for cocrystallisation of art and succinic acid	40			
Figure S75	Figure S75PXRD patterns for cocrystallisation of art and phenol				
Figure S76	Figure S76 Reflectance FT-IR spectra for res, art and (art) ₂ (res)				
Figure S77	Reflectance FT-IR spectra for orc, art and (art)(orc)	42			
Figure S78	Figure S78 DSC thermogram for (art) ₂ (res)				
Figure S79	DSC thermogram for (art) (orc)	43			
Table S1	Calculated descriptors for potential cocrystal formers	44			

Figure S1. Cocrystallisation of art and nicotinamide, from top to bottom: PXRD patterns of art, nicotinamide, LAG product.

Figure S2. Cocrystallisation of **art** and ascorbic acid (vitamin C), from top to bottom: PXRD patterns of **art**, ascorbic acid, LAG product.

Figure S3. Cocrystallisation of art and urea, from top to bottom: PXRD patterns of art, urea, LAG product.

Figure S4. Cocrystallisation of **art** and tromethamine, from top to bottom: PXRD patterns of **art**, tromethamine, LAG product.

Figure S5. Cocrystallisation of **art** and theophylline-7-acetic acid, from top to bottom: PXRD patterns of **art**, theophylline-7-acetic acid, LAG product.

Figure S6. Cocrystallisation of **art** and theophylline, from top to bottom: PXRD patterns of **art**, theophylline, LAG product.

Figure S7. Cocrystallisation of art and theobromine, from top to bottom: PXRD patterns of art, theobromine, LAG product.

Figure S8. Cocrystallisation of art and sulfamide, from top to bottom: PXRD patterns of art, sulfamide, LAG product.

Figure S9. Cocrystallisation of art and sucrose, from top to bottom: PXRD patterns of art, sucrose, LAG product.

Figure S10. Cocrystallisation of art and sorbitol, from top to bottom: PXRD patterns of art, sorbitol, LAG product.

Figure S11. Cocrystallisation of art and saccharin, from top to bottom: PXRD patterns of art, saccharin, LAG product.

Figure S12. Cocrystallisation of art and res, from top to bottom: PXRD patterns of art, res, LAG product.

Figure S13. Cocrystallisation of art and pyridoxine, from top to bottom: PXRD patterns of art, pyridoxine, LAG product.

Figure S14. Cocrystallisation of art and phloroglucinol, from top to bottom: PXRD patterns of art, phloroglucinol, LAG product.

Figure S15. Cocrystallisation of art and paracetamol, from top to bottom: PXRD patterns of art, paracetamol, LAG product.

Figure S16. Cocrystallisation of art and orc, from top to bottom: PXRD patterns of art, orc, LAG product.

Figure S17. Cocrystallisation of **art** and N-methylglucosamine, from top to bottom: PXRD patterns of **art**, N-methylglucosamine, LAG product.

Figure S18. Cocrystallisation of art and methanesulfonic acid, from top to bottom: PXRD patterns of art, LAG product.

Figure S19. Cocrystallisation of art and D-mannitol, from top to bottom: PXRD patterns of art, D-mannitol, LAG product.

Figure S20. Cocrystallisation of art and malonic acid, from top to bottom: PXRD patterns of art, malonic acid, LAG product.

Figure S21. Cocrystallisation of art and maleic acid, from top to bottom: PXRD patterns of art, maleic acid, LAG product.

Figure S22. Cocrystallisation of art and L-lysine, from top to bottom: PXRD patterns of art, L-lysine, LAG product.

Figure S23. Cocrystallisation of **art** and L-tartaric acid, from top to bottom: PXRD patterns of **art**, L-tartaric acid, LAG product.

Figure S24. Cocrystallisation of art and L-phenylalanine, from top to bottom: PXRD patterns of art, L-phenylalanine, LAG product.

Figure S25. Cocrystallisation of art and L-mandelic acid, from top to bottom: PXRD patterns of art, L-mandelic acid, LAG product.

Figure S26. Cocrystallisation of art and L-malic acid, from top to bottom: PXRD patterns of art, L-malic acid, LAG product.

Figure S27. Cocrystallisation of art and lactobionic acid, from top to bottom: PXRD patterns of art, lactobionic acid, LAG product.

Figure S28. Cocrystallisation of **art** and lactic acid, from top to bottom: PXRD patterns of **art**, LAG product.

Figure S29. Cocrystallisation of art and RS-ibuprofen, from top to bottom: PXRD patterns of art, RS-ibuprofen, LAG product.

Figure S30. Cocrystallisation of art and hydroquinone, from top to bottom: PXRD patterns of art, hydroquinone, LAG product.

Figure S31. Cocrystallisation of art and hippuric acid, from top to bottom: PXRD patterns of art, hippuric acid, LAG product.

Figure S32. Cocrystallisation of **art** and 4-hexylresorcinol, from top to bottom: PXRD patterns of **art**, 4-hexylresorcinol, LAG product.

Figure S33. Cocrystallisation of **art** and glycolic acid, from top to bottom: PXRD patterns of **art**, glycolic acid, LAG product.

Figure S34. Cocrystallisation of art and glycine, from top to bottom: PXRD patterns of art, glycine, LAG product.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010

Figure S35. Cocrystallisation of art and L-glutamine, from top to bottom: PXRD patterns of art, L-glutamine, LAG product.

Figure S36. Cocrystallisation of art and D-glucose, from top to bottom: PXRD patterns of art, D-glucose, LAG product.

Figure S37. Cocrystallisation of art and gentisic acid, from top to bottom: PXRD patterns of art, gentisic acid, LAG product.

Figure S38. Cocrystallisation of **art** and γ-cyclodextrin, from top to bottom: PXRD patterns of **art**, γ-cyclodextrin, LAG product.

Figure S39. Cocrystallisation of art and galacturonic acid, from top to bottom: PXRD patterns of art, galacturonic acid, LAG product.

Figure S40. Cocrystallisation of art and fumaric acid, from top to bottom: PXRD patterns of art, fumaric acid, LAG product.

Figure S41. Cocrystallisation of art and D-fructose, from top to bottom: PXRD patterns of art, D-fructose, LAG product.

Figure S42. Cocrystallisation of art and ethylenediamine, from top to bottom: PXRD patterns of art and the LAG product.

Figure S43. Cocrystallisation of art and ethanolamine, from top to bottom: PXRD patterns of art and the LAG product.

Figure S44. Cocrystallisation of art and ethanedisulfonic acid, from top to bottom: PXRD patterns of art, ethanedisulfonic acid, LAG product.

Figure S45. Cocrystallisation of art and DL-tartaric acid, from top to bottom: PXRD patterns of art, DL-tartaric acid, LAG product.

Figure S46. Cocrystallisation of **art** and DL-phenylalanine, from top to bottom: PXRD patterns of **art**, DL-phenylalanine, LAG product.

Figure S47. Cocrystallisation of **art** and DL-mandelic acid, from top to bottom: PXRD patterns of **art**, DL-mandelic acid, LAG product.

Figure S48. Cocrystallisation of art and DL-malic acid, from top to bottom: PXRD patterns of art, DL-malic acid, LAG product.

Figure S49. Cocrystallisation of art and DL-alanine, from top to bottom: PXRD patterns of art, DL-alanine, LAG product.

Figure S50. Cocrystallisation of **art** and D-glucuronic acid, from top to bottom: PXRD patterns of **art**, D-glucuronic acid, LAG product.

Figure S51. Cocrystallisation of art and S-cysteine, from top to bottom: PXRD patterns of art, S-cysteine, LAG product.

Figure S52. Cocrystallisation of art and cyanuric acid, from top to bottom: PXRD patterns of art, cyanuric acid, LAG product.

Figure S53. Cocrystallisation of art and citric acid, from top to bottom: PXRD patterns of art, citric acid, LAG product.

Figure S54. Cocrystallisation of art and L-serine, from top to bottom: PXRD patterns of art, L-serine and the LAG product.

Figure S55. Cocrystallisation of **art** and camphor-10-sulfonic acid, from top to bottom: PXRD patterns of **art**, camphor-10-sulfonic acid, LAG product.

Figure S56. Cocrystallisation of art and caffeine, from top to bottom: PXRD patterns of art, caffeine, LAG product.

Figure S57. Cocrystallisation of art and β -D-lactose, from top to bottom: PXRD patterns of art, β -D-lactose, LAG product.

Figure S58. Cocrystallisation of **art** and β-cyclodextrin, from top to bottom: PXRD patterns of **art**, β-cyclodextrin, LAG product.

Figure S59. Cocrystallisation of art and benzenesulfonic acid, from top to bottom: PXRD patterns of art, benzenesulfonic acid, LAG product.

Figure S60. Cocrystallisation of art and L-aspartic acid, from top to bottom: PXRD patterns of art, L-aspartic acid, LAG product.

Figure S61. Cocrystallisation of art and L-arginine, from top to bottom: PXRD patterns of art, L-arginine, LAG product.

Figure S62. Cocrystallisation of **art** and α-cyclodextrin, from top to bottom: PXRD patterns of **art**, α-cyclodextrin, LAG product.

Figure S63. Cocrystallisation of art and acetic acid, from top to bottom: PXRD patterns of art and the LAG product.

Figure S64. Cocrystallisation of **art** and 5-aminosalicylic acid, from top to bottom: PXRD patterns of **art**, 5-aminosalicylic acid, LAG product.

Figure S65. Cocrystallisation of art and 3-ap, from top to bottom: PXRD patterns of art, 3-ap, LAG product.

Figure S66. Cocrystallisation of **art** and 3,5-diaminobenzoic acid, from top to bottom: PXRD patterns of **art**, 3,5-diaminobenzoic acid, LAG product.

Figure S67. Cocrystallisation of **art** and benzoic acid, from top to bottom: PXRD patterns of **art**, benzoic acid, LAG product and simulated pattern for triclinic **art**.

Figure S68. Cocrystallisation of art and 1,3-pda, from top to bottom: PXRD patterns of art, 1,3-pda, LAG product.

Figure S69. Cocrystallisation of **art** and 1,3-dihydroxynaphthalene, from top to bottom: PXRD patterns of **art**, 1,3-dihydroxynaphthalene, LAG product.

Figure S70. Cocrystallisation of art and olivetol, from top to bottom: PXRD patterns of art, olivetol, LAG product.

Figure S71. Cocrystallisation of art and orotic acid, from top to bottom: PXRD patterns of art, orotic acid, LAG product.

Figure S72. Cocrystallisation of art and piperazine, from top to bottom: PXRD patterns of art, piperazine, LAG product.

Figure S73. Cocrystallisation of art and L-tyrosine, from top to bottom: PXRD patterns of art, L-tyrosine, LAG product.

Figure S74. Cocrystallisation of **art** and succinic acid, from top to bottom: PXRD patterns of **art**, succinic acid, LAG product. Mechanochemical reaction resulted in conversion of **art** to triclinic form.

Figure S75. Cocrystallisation of art and phenol, from top to bottom: PXRD patterns of art, phenol, LAG product.

Figure S76. Reflectance FT-IR spectra (top to bottom) for res, art and (art)₂ (res).

Figure S77. Reflectance FT-IR spectra (top to bottom) for orc, art and (art) (orc).

Figure S78. DSC thermogram for $(art)_2$ (res) cocrystal obtained by LAG.

Figure S79. DSC thermogram for (art) (orc) cocrystal obtained by LAG.

						Predicted
entry	co-former	S/L	M/L	FNO	Dipole	cocrystallisation
1	phloroglucinol	0.41	0.93	0.33	1.19	Y
2	phenol	0.44	0.88	0.14	0.98	Y
3	orc	0.50	0.95	0.22	1.03	Y
4	res	0.39	0.84	0.25	1.88	Y
5	3-aminophenol	0.45	0.91	0.25	2.52	Y
6	1,3-phenylenediamine	0.40	0.83	0.25	1.6	Y
7	tyrosine	0.66	0.71	0.31	16.11	Ν
8	glutamine	0.68	0.68	0.50	15.38	Ν
9	saccharin	0.61	0.87	0.33	3.21	Y
10	ascorbic acid	0.60	0.76	0.50	4.52	Y
11	glycolic acid	0.59	0.76	0.60	2.98	Ν
12	gentisic acid	0.39	0.86	0.36	2.5	Y
13	tartaric acid ^(a)	0.69	0.69	0.60	4.68	Ν
14	lysine	0.45	0.57	0.40	14.77	Ν
15	mannitol	0.62	0.66	0.50	2.49	Y
16	N-methylglucamine	0.59	0.68	0.46	2.02	Y
17	pyridoxine	0.46	0.94	0.33	4.83	Y
18	nicotinamide	0.41	0.69	0.33	1.96	Y
19	glucose	0.59	0.89	0.50	2.51	Y
20	citric acid	0.56	0.65	0.54	5.67	Y
21	acetic acid	0.65	0.88	0.50	2.35	Y
22	sorbitol	0.64	0.69	0.50	2.66	Y
23	arginine	0.57	0.59	0.50	<u>29.75</u>	Ν
24	fructose	0.80	0.93	0.50	2.69	Y
25	caffeine	0.42	0.86	0.43	3.42	Y
26	sucrose	0.78	0.87	0.48	4.82	Y
27	glycine	0.62	0.79	0.60	<u>15</u>	Ν
28	hippuric acid	0.46	0.56	0.31	4.22	Ν
29	lactose	0.48	0.73	0.48	5.65	Y
30	cysteine	0.86	0.98	0.43	<u>14.4</u>	Ν
31	aspartic acid	0.63	0.72	0.56	<u>13.56</u>	Ν
32	lactic acid	0.69	0.83	0.50	3.58	Y
33	malic acid ^(a)	0.57	0.64	0.56	2.66	Ν
34	ethylenediamine	0.61	0.71	0.50	<u>0</u>	Ν
35	succinic acid	0.44	0.60	0.50	<u>0</u>	Ν
36	fumaric acid	0.38	0.65	0.50	<u>0</u>	Ν
37	maleic acid	0.38	0.69	0.50	3.53	Y
38	malonic acid	0.63	0.69	0.57	3.76	Ν
39	orotic acid	0.37	0.82	0.55	3.57	Ν
40	mandelic acid ^(a)	0.73	0.74	0.27	1.72	Y
41	urea	0.54	0.88	<u>0.75</u>	3.68	Ν
42	tromethamine	0.60	0.92	0.36	2.35	Y
43	glucuronic acid	0.63	0.78	0.54	2.48	Y
44	benzenesulfonic acid	0.58	0.72	0.30	2.04	Y
45	piperazine	0.67	0.94	0.33	0	N

Table S1. Calculated descriptors for potential cocrystal formers^(a,b) (orc and res are highlighted in bold and values outside the range are underlined).

-		-		2		
46	ibuprofen	0.47	0.54	0.13	2.15	Ν
47	paracetamol	0.36	0.60	0.27	5.41	Ν
48	benzoic acid	0.37	0.73	0.22	2.51	Y
49	theophylline	0.43	0.88	0.46	3.26	Y
50	theobromine	0.43	0.81	0.46	4.18	Y
51	camphorsulfonic acid	0.77	0.78	0.27	5.91	Y
52	1,3-dihydroxynaphthalene	0.35	0.83	0.17	1.07	Y
53	3,5-diaminobeznoic acid	0.36	0.91	0.36	3.31	Y
54	5-aminosalicylic acid	0.36	0.80	0.36	3.38	Y
55	alanine ^(a)	0.77	0.97	0.50	14.99	Ν
56	L-serine	0.78	0.98	0.57	16.03	Ν
57	cyanuric acid	0.44	0.98	0.67	0.04	Ν
58	ethanedisulfonic acid	0.51	0.52	0.60	<u>0</u>	Ν
59	galacturonic acid	0.55	0.78	0.54	4.83	Y
60	hexylresorcinol	0.36	0.55	0.14	1.57	Ν
61	hydroquinone	0.39	0.79	0.25	<u>0</u>	Ν
62	lactobionic acid	0.56	0.92	0.50	3.89	Y
63	methanesulfonic acid	0.80	0.85	0.60	1.95	Ν
64	olivetol	0.44	0.64	0.15	2.72	Y
65	phenylalanine ^(a)	0.61	0.65	0.25	15.26	Ν
66	sulfamide	0.75	0.87	0.80	2.51	Ν
67	theophylline-7-acetic acid	0.53	0.82	0.47	4.34	Y

Continuation of Table 1

(a) Descriptors for chiral and racemic forms of a compound are identical; (b) cyclodextrin inclusion hosts are excluded.