Supporting Information

Syntheses, structures, magnetic and photoluminescence properties of metal-organic frameworks based on aromatic polycarboxylate acids

Zhao-Rui Pan^{a,b}, Jiao Xu^a, Xiao-qiang Yao^a, Yi-Zhi Li^a, Zi-Jian Guo^a and He-Gen Zheng *^{a,c}

^aState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China.

^b School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China

^cState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

Co compound			
Co1-O1	2.0644(16)	Co1–O3a	2.0762(15)
Col-O4b	2.1590(16)		
O1 - Co1 - O1d	92.30(9)	O1 - Co1 - O3c	176.83(6)
O1 – Co1 – O3a	87.87(6)	O3c - Col - O3a	92.15(8)
O1 - Co1 - O4e	83.17(6)	O3c - Col - O4e	93.66(6)
O3a - Co1 - O4e	85.52(6)	O1 - Co1 - O4f	97.65(6)
O4e - Co1 - O4f	178.82(9)		
Mn compound			
Mn1-01	2.210(2)	Mn1-03	2.144(2)
Mn1-04	2.181(2)		
O3 - Mn1 - O1	95.03(8)	O4 - Mn1 - O1	85.95(8)
O3 - Mn1 - O4	179.01(13)	O3a - Mn1 - O3	94.00(12)
O3a - Mn1 - O4	86.77(8)	O4a - Mn1 - O4	92.47(11)
O3a - Mn1 - O1	85.70(9)	O4a - Mn1 - O1	93.36(8)
O1a - Mn1 - O1	179.01(13)		
Cd compound			
Cd1 - N2	2.331(3)	Cd1a – O4	2.332(2)
Cd1 - O2	2.348(2)	Cd1 - N1	2.386(3)
Cd1 - O3	2.391(2)	Cd1b - O4	2.401(2)
Cd1a – O5	2.494(3)		
N2 - Cd1 - O4a	157.20(9)	N2 - Cd1 - O2	89.40(10)
O4a - Cd1 - O2	102.18(9)	N2 - Cd1 - N1	69.98(10)
O4a - Cd1 - N1	92.95(9)	O2 - Cd1 - N1	154.55(9)
N2 - Cd1 - O3	92.77(9)	O4a - Cd1 - O3	109.98(8)
O2 - Cd1 - O3	55.03(8)	N1 - Cd1 - O3	137.58(9)
N2 - Cd1 - O4b	89.84(9)	O4a - Cd1 - O4b	72.17(9)
O2 - Cd1 - O4b	84.12(8)	N1 - Cd1 - O4b	81.18(9)
O3 - Cd1 - O4b	139.00(8)	N2 - Cd1 - O5a	134.29(10)
O4a – Cd1 – O5a	53.72(8)	O2 - Cd1 - O5a	122.57(9)
N1 - Cd1 - O5a	82.88(9)	O3 - Cd1 - O5a	83.01(8)
O4b - Cd1 - O5a	122.26(8)	Cd1c - O4 - Cd1b	107.83(9)

Table S1 Selected Bond Distances (Å) and Angles (deg) for Compounds 1-3 (Co, Mn, and

Cd).

 O4b - Cd1 - O5a 122.26(8) Cd1c - O4 - Cd1b 107.83(9)

 Symmetry transformations used to generate equivalent atoms:
 a = -x, -y, -z; b = -x + 1/2, -y + 1/2, z + 1/2. c = -x, -y, z - 1/2; d = -x, y, -z - 1/2;

 a = -x, -y, -z; b = -x + 1/2, -y + 1/2, z + 1/2. c = -x, -y, z - 1/2; d = -x, y, -z - 1/2;

 e = -x + 1/2, -y + 1/2, z - 1/2; f = x - 1/2, -y + 1/2, -z. (Co compound 1)

 a = -x, y, -z + 3/2. (Mn compound 2)

 a = x - 1/2, -y + 1, z - 1/2; b = -x + 3/2, y, -z + 3/2; c = x - 1/2, -y + 2, z - 1/2. (Cd compound 3)

Eu compound			
Eu1 – O3	2.359(7)	Eu1 – O5	2.443(6)
Eula — O2	2.446(6)	Eu1b – O6	2.490(6)
Eu1 — O7	2.524(7)	Eu1c – O1	2.548(6)
Eu1c - O2	2.587(6)	O4d — Eu1	2.334(7)
O4d - Eu1 - O3	85.9(2)	O4d - Eu1 - O5	121.9(3)
O3 - Eu1 - O5	74.8(2)	O4d - Eu1 - O2a	81.0(2)
O3 - Eu1 - O2a	132.3(2)	O5 - Eu1 - O2a	74.2(2)
O4d - Eu1 - O6b	81.1(2)	O5 - Eu1 - O6b	135.8(2)
O3 - Eu1 - O6b	148.8(2)	O4d - Eu1 - O7	78.5(3)
O2a — Eu1 — O6b	73.4(2)	O3 - Eu1 - O7	77.6(2)
O5 - Eu1 - O7	143.7(2)	O2a - Eu1 - O7	142.0(2)
O6b - Eu1 - O7	72.1(2)	O4d - Eu1 - O1c	155.3(2)
O3 - Eu1 - O1c	85.0(2)	O5 - Eu1 - O1c	77.4(2)
O2a - Eu1 - O1c	121.6(2)	O6b - Eu1 - O1d	95.2(2)
O7 - Eu1 - O1d	77.1(2)	O4d - Eu1 - O2c	145.8(2)
O3 - Eu1 - O2c	128.0(2)	O5 - Eu1 - O2c	70.7(2)
O2a - Eu1 - O2c	72.1(2)	O6b - Eu1 - O2c	71.3(2)
O7 - Eu1 - O2c	110.5(2)	O1c - Eu1 - O2c	50.5(2)
O4d - Eu1 - Eu1b	115.57(19)	O5 - Eu1 - Eu1b	68.04(17)
O3 - Eu1 - Eu1b	142.74(16)	O6b - Eu1 - Eu1b	67.95(15)
O2a – Eu1 – Eu1b	37.23(14)	O7 - Eu1 - Eu1b	134.1(2)
Olc – Eul – Eulb	84.90(15)	O2c - Eu1 - Eu1b	34.89(13)
Eule – O2 – Eulc	107.9(2)		
Nd compound			
Nd1a—O4	2.333(5)	Nd1b-O3	2.335(5)
Nd1c-O2	2.418(4)	Nd105	2.420(4)
Nd1c-O6	2.472(4)	Nd1-07	2.496(6)
Nd101	2.534(4)	Nd1O2	2.589(4)
O4d—Nd1	2.333(5)	O4a—Nd1—O3b	85.47(17)
O3b-Nd1-O2c	131.75(17)	O4a-Nd1-O2c	80.40(16)
O4a–Nd1–O5	121.40(18)	O3bNd1O5	74.49(17)
O2c-Nd1-O5	74.37(16)	O5-Nd1-O6c	136.25(16)
O4a-Nd1-O6c	81.28(17)	O4a–Nd1–O7	78.65(19)
O3b-Nd1-O6c	148.71(16)	O3bNd1O7	77.82(19)
O2c-Nd1-O6c	73.63(15)	O2c-Nd1-O7	141.77(17)
O5-Nd1-O7	143.71(18)	O3b-Nd1-O1	85.13(16)
O6c-Nd1-O7	71.85(18)	O2c-Nd1-O1	122.41(14)
O4a-Nd1-O1	155.16(17)	O5-Nd1-O1	77.79(17)
O6c-Nd1-O1	95.20(17)	O5-Nd1-O2	70.77(16)

Table S2 Selected Bond Distances (Å) and Angles (deg) for compounds 4-6 (Eu,

Nd, and Pr).

O7-Nd1-O1	76.91(18)	O6c-Nd1-O2	71.62(15)
O4a–Nd1–O2	145.83(15)	O7-Nd1-O2	110.86(18)
O3b-Nd1-O2	128.19(15)	O1-Nd1-O2	50.99(14)
O2c-Nd1-O2	72.39(16)	O5-Nd1-O2	70.77(16)
O4a-Nd1-Nd1c	115.48(13)	O3b-Nd1-Nd1c	142.60(13)
O2c-Nd1-Nd1c	37.62(10)	O6c-Nd1-Nd1c	68.25(11)
O5–Nd1–Nd1c	68.16(11)	O7c-Nd1-Nd1	134.27(15)
O1c-Nd1-Nd1	85.27(10)	O2c-Nd1-Nd1	34.76(10)
Nd1c-O2-Nd1	107.61(16)		
Pr compound			
O1–Pr1	2.292(5)	O3–Pr1	2.421(5)
O2–Pr1	2.445(6)	O4–Pr1	2.371(5)
O5a–Pr1	2.493(5)	O8b–Pr1	2.282(5)
O7a–Pr1	2.546(5)	Pr1c-O7	2.375(5)
Pr1d-O7-Pr1a	107.66(18)	O1-Pr1-O4	74.07(19)
O8b-Pr1-O1	85.34(19)	O8b-Pr1-O7	80.52(18)
O8b-Pr1-O4	120.7(2)	O1-Pr1-O7	131.69(19)
O4–Pr1–O7c	74.33(18)	O4-Pr1-O3	136.95(18)
O8b-Pr1-O3	81.62(19)	O7c-Pr1-O3	74.16(17)
O1–Pr1–O3	148.40(18)	O8b-Pr1-O2	79.3(2)
O1–Pr1–O2	77.2(2)	O8b–Pr1–O5a	155.04(19)
O4–Pr1–O2	142.8(2)	O1–Pr1–O5a	84.14(18)
O7c-Pr1-O2	142.75(19)	O4–Pr1–O5a	77.69(19)
O3–Pr1–O2	72.2(2)	O7c-Pr1-O5a	122.89(16)
O3–Pr1–O5a	95.84(18)	O4–Pr1–O7a	71.37(18)
O2–Pr1–O5a	76.4(2)	O7c-Pr1-O7a	72.34(18)
O8b-Pr1-O7a	145.96(17)	O3–Pr1–O7a	71.60(17)
O1–Pr1–O7a	128.18(17)	O2-Pr1-O7a	110.77(19)
O5a–Pr1–O7a	51.71(15)	O4-Pr1-Pr1e	68.52(13)
O8b-Pr1-Pr1e	115.63(14)	O7c-Pr1-Pr1e	37.63(11)
O1-Pr1-Pr1e	142.52(14)	O3–Pr1–Pr1e	68.57(12)
O2–Pr1–Pr1e	134.66(16)	O7a–Pr1–Pr1e	34.72(11)
O5a–Pr1–Pr1e	85.84(11)		

Symmetry transformations used to generate equivalent atoms:

a = x + 1/2, -y + 1/2, z-1/2; b = -x + 5/2, -y + 1/2, -z + 1; c = -x + 2, y, -z + 3/2; d = -x + 2, y, -z + 1/2; e = x - 1/2, -y + 1/2, z + 1/2.(Eu compound 4) a = x, y, z - 1; b = -x, y, -z + 3/2; c = -x + 1/2, -y + 1/2, -z + 1; d = x, y, z + 1.(Nd compound 5) a = -x, y, -z + 1/2; b = -x, y, -z - 1/2; c = x + 1/2, -y + 1/2, z - 1/2; d = x - 1/2, -y + 1/2, z + 1/2; e = -x + 1/2, -y + 1/2, -z.(Pr compound 6)

Figure S1. An ORTEP drawing of Mn compound **2** showing 30% ellipsoid probability (hydrogen atoms are omitted for clarity). Symmetry codes: #1= -x, 2-y, 2-z; #2= -x, y, 1.5-z; #3= x, 2-y, 0.5+z; #4= -x, y, 1.5-z; #5= -x, 2-y, 1-z; #6= -0.5-x, -0.5+y, z; #7= -0.5+x, -0.5+y, 1.5-z; #8= 0.5+x, -0.5+y, 1.5-z.

Figure S2. Experimental (bottom) and simulated (top) powder X-ray diffraction patterns of Co compound **1** at 293K.

Figure S3. Experimental (bottom) and simulated (top) powder X-ray diffraction patterns of Mn compound **2** at 293K.

Figure S4. Experimental (bottom) and simulated (top) powder X-ray diffraction patterns of Cd compound **3** at 293K.

Figure S5. Experimental (bottom) and simulated (top) powder X-ray diffraction patterns of Eu compound 4 at 293K.

Figure S6. Experimental (bottom) and simulated (top) powder X-ray diffraction patterns of Nd compound **5** at 293K.

Figure S7. Experimental (bottom) and simulated (top) powder X-ray diffraction patterns of Pr compound **6** at 293K.