Suprementary Material (ES) for CrystEngComm This journal is © The Royal Society of Chemistry 2011 to the paper entitled

Supramolecular Assemblies Involving Anion $-\pi$ and Lone Pair $-\pi$ Interactions: Experimental Observation and Theoretical Analysis

Amrita Das,^{*a*} Somnath Ray Choudhury,^{*b*} Carolina Estarellas,^{*c*} Biswajit Dey,^{*d*} Antonio Frontera,^{**c*} Joanna Hemming,^{*e*} Madeleine Helliwell,^{*e*} Patrick Gamez,^{**f*} and Subrata Mukhopadhyay^{**a*}

Table of Contents

Table S1. Crystal data and structure refinement for con-	npounds 1 and 2.	Page S2
Table S2. Selected bond lengths (Å) and angles (deg) f	for 1 .	S3
Table S3. Selected bond lengths (Å) and angles (deg) f	for 2 .	S3
Figure S1. Schematic representation of the reaction particular dimerization energies E_1 and E_2 .	thways used to determine the	S4
Figure S2. Schematic representation of the reaction particular dimerization energies E_3 and E_4 .	thways used to determine the	S5
Figure S3. TG plots of compounds 1 and 2.		S6

Compound	1	2
Formula	$C_{26}H_{36}N_8O_{18}Cl_2Ni$	$C_{26}H_{36}N_8O_{10}P_2F_{12}N_1$
$Mw (g mol^{-1})$	878.22	969.28
Crystal system	Triclinic	Triclinic
Space group	<i>P</i> ī (No. 2)	<i>P</i> ī (No. 2)
<i>a</i> / Å	7.0471(12)	7.0459(10)
<i>b</i> / Å	11.314(2)	11.8570(17)
<i>c</i> / Å	11.747(2)	11.8501(17)
α	86.321(3)°	84.482(2)°
β	83.933(3)°	84.484(2)°
γ	72.684(3)°	72.251(2)°
<i>F</i> (000)	454	494
$V/ Å^3$	888.6(3)	936.2(2)
Ζ	1	1
T/K	100	100
Theta min-max [°]	1.9 to 26.4	2.4 to 26.4
λ (Mo K α)/ Å	0.71073	0.71073
μ (Mo K α)/ mm ⁻¹	0.787	0.728
Crystal Size [mm ³]	$0.40\times0.45\times0.50$	$0.20\times0.45\times0.50$
$R1, I > 2\sigma(I)$ (all)	0.0340	0.0292
w <i>R</i> 2, $I > 2\sigma(I)$ (all)	0.0791	0.0783
S (GOF)	0.97	1.04
Total reflections	7093	7510
Independent reflections (R_{int})	3571 (0.049)	3768 (0.014)
Observed data $[I > 2\sigma(I)]$	2921	3573
Min. and max. resd. dens. $[e/ Å^3]$	-0.38, 0.56	-0.36, 0.51

Table S2. Selected b	ond lengths (Å)	and angles	(deg) for 1.
----------------------	-----------------	------------	--------------

Ni(1)-O(1)	2.0137(15)	O(4)–C(3)	1.283(3)
Ni(1)–O(4)	2.0051(15)	O(3)–C(3)	1.232(2)
Ni(1)–O(5)	2.0949(18)	C(1)–C(2)	1.513(3)
O(1)–C(1)	1.275(3)	C(2)–C(3)	1.522(3)
O(2)–C(1)	1.247(3)		
O(1)-Ni(1)-O(4)	90.81(6)	Ni(1)-O(4)-C(3)	128.39(13)
O(1)-Ni(1)-O(5)	94.38(7)	O(4)–C(3)–O(3)	123.10(19)
O(1)-Ni(1)-O(4) [#]	89.19(6)	C(1)–C(2)–C(3)	120.11(18)
O(1)-Ni(1)-O(5) [#]	85.62(7)	O(1)–C(1)–O(2)	122.22(19)
O(4)-Ni(1)-O(5)	91.96(6)	O(4)–C(3)–C(2)	119.38(18)
O(4)-Ni(1)-O(5) [#]	88.05(6)	O(1)–C(1)–C(2)	119.05(19)
Ni(1)–O(1)–C(1)	127.11(13)	O(4)–C(3)–C(2)	119.38(18)

Symmetry code: # = 2-x, 1-y, 2-z

Table S3. Selected bond le	engths (Å) ar	nd angles (deg	g) for 2
----------------------------	---------------	----------------	-----------------

Ni(1)–O(1)	2.0218(12)	O(4)–C(3)	1.2841(19)
Ni(1)-O(4)	1.9971(11)	O(3)–C(3)	1.2344(19)
Ni(1)–O(5)	2.0878(14)	C(1)–C(2)	1.520(2)
O(1)–C(1)	1.2704(19)	C(2)–C(3)	1.525(2)
O(2)–C(1)	1.253(2)		
O(1)–Ni(1)–O(4)	91.10(5)	Ni(1)-O(4)-C(3)	129.30(10)
O(1)-Ni(1)-O(5)	94.56(5)	O(4)–C(3)–O(3)	123.00(15)
O(1)-Ni(1)-O(4) [#]	88.90(5)	C(1)-C(2)-C(3)	120.20(14)
O(1)-Ni(1)-O(5) [#]	85.44(5)	O(1)-C(1)-O(2)	122.02(14)
O(4)-Ni(1)-O(5)	92.03(5)	O(4)–C(3)–C(2)	120.08(13)
O(4)-Ni(1)-O(5) [#]	87.97(5)	O(1)-C(1)-C(2)	120.05(13)
Ni(1)-O(1)-C(1)	127.52(10)	O(4)–C(3)–C(2)	120.08(13)

Symmetry code: # = 2-x, 1-y, 2-z

Figure S1. Schematic representation of the reaction pathways used to determine the dimerization energies E_1 and E_2 for monomers A) M5 and B) M6. The two noncovalent forces (H-bonding and lp– π interactions) responsible for the formation of the dimers D5 and D6 are indicated.

Figure S2. Schematic representation of the reaction used to determine the dimerization energies E_3 and E_4 for monomers A) **M7** and B) **M8**. The two noncovalent forces (H-bonding and lp– π interactions) responsible for the formation of the dimers **D7** and **D8** are indicated.

