## Hydrogen-bonded adducts between neutral molecules and $[Mo(\eta^3 - methallyl)(CO)_2(HOC(py)_3)]^+$ : snapshots of a deprotonation.

Dolores Morales, \* Julio Pérez, \* Héctor Martínez-García, Marcos Puerto and Ignacio del Río

**Experimental Section:** All manipulations were carried out at room temperature under a dinitrogen atmosphere employing Schlenk techniques.  $CH_2Cl_2$  was dried over  $CaH_2$ , THF and diethylether over Na-benzophenone, and hexane over sodium. IR and NMR spectra were recorded on Perkin Elmer FT1720-X and Bruker AV-400, AV-300 spectrometers respectively. Deuterated solvents were degassed by three freeze-pump-thaw cycles, dried over 4Å molecular sieves and stored in the dark.  $[MoCl(\eta^3-methallyl)(CO)_2(NCMe)_2]$ ,<sup>1</sup> NaBAr'<sub>4</sub>,<sup>2</sup> HOC(py)<sub>3</sub>,<sup>3</sup> and HOC(Ph)(py)<sub>2</sub><sup>4</sup> were prepared according to literature procedures. All other chemicals were purchased and used without further purification.



Figure 1S: Labeling scheme for BAr'<sub>4</sub>, methallyl and 2-pyridyl.

 $[MoCl(\eta^3 -$ Mo(η<sup>3</sup>-methallyl)(CO)<sub>2</sub>(HOC(py)<sub>3</sub>)][BAr'<sub>4</sub>] (**1**H). of А mixture methallyl)(CO)<sub>2</sub>(NCMe)<sub>2</sub>] (0.100 g, 0.308 mmol), HOC(py)<sub>3</sub> (0.081 g, 0.308 mmol) and NaBAr'<sub>4</sub> (0.273 g, 0.308 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15 mL) was stirred for 1 hour and filtered through diatomaceous earth. After in vacuo concentration to ca. 5 mL, the orange solution was layered with hexane (10 mL) and placed at -20 °C for two days, yielding red crystals, one of which was used for an X-ray structure determination. Yield: 0.350g, 85%. Anal. Calcd. for C<sub>54</sub>H<sub>32</sub>BF<sub>24</sub>MoN<sub>3</sub>O<sub>3</sub>: C, 48.64; H, 2.42; N, 3.15. Found: C, 48.45; H, 2.40; N, 3.35. IR (CH<sub>2</sub>Cl<sub>2</sub>)vCO (cm<sup>-1</sup>): 1956 vs, 1869 s; (KBr) vCO (cm<sup>-1</sup>): 1963 f, 1870 f. <sup>1</sup>H RMN(CD<sub>2</sub>Cl<sub>2</sub>): 11.16 [s<sub>br</sub>, 1H, O-H], 9.42 [s, 2H, H<sub>6</sub> py<sub>coord</sub>], 8.77 [d (4.8), 1H, H<sub>6</sub> py<sub>unc</sub>], 8.28 [t (7.8), 1H, H<sub>4</sub> py<sub>unc</sub>], 8.12 [d (7.8), 1H, H<sub>3</sub> py<sub>unc</sub>], 7.89 [t (7.8), 2H, H<sub>4</sub> py<sub>coord</sub>], 7.82 [s, 8*H*<sub>o</sub> of BAr'<sub>4</sub>], 7.73 [m, 3H, *H*<sub>py</sub>], 7.62 [s, 4H, *H*<sub>p</sub> of BAr'<sub>4</sub>], 7.55 [t (6.1), 2H, *H*<sub>5</sub> py<sub>coord</sub>], 3.48 [s, 2H,  $H_{syn}$ ], 1.68 [s, 2H,  $H_{anti}$ ], 1.44 [s, 3H, CH<sub>3</sub> of methallyl]. <sup>13</sup>C{<sup>1</sup>H}

NMR(CD<sub>2</sub>Cl<sub>2</sub>): 227.7 [s, CO], 161.8 [c (J(C,B)= 49.8),  $C_i$  of BAr'<sub>4</sub>], 155.2 [s, py], 154.8 [s, py], 148.4 [s, py], 147.3 [s, py], 141.2 [s, py], 140.2 [s, py], 134.8 [s,  $C_o$  of BAr'<sub>4</sub>], 129.2 [m,  $C_m$  of BAr'<sub>4</sub>], 126.5 [s, py], 125.6 [s, py], 124.7 [c (J(C,F)= 272.3),  $CF_3$  of BAr'<sub>4</sub>], 124.3 [s, py], 121.1 [s, py], 117.5 [s,  $C_p$  of BAr'<sub>4</sub>], 85.6 [s, C-OH], 83.5 [s,  $C_c$  of methallyl], 57.2 [s,  $C_t$  of methallyl], 19.1 [s,  $CH_3$  of methallyl].

 $[Mo(\eta^3-methallyl)(CO)_2(HOC(py)_3)][OTf]$ (1H(OTf)). of  $[MoCl(n^3 -$ А mixture methallyl)(CO)<sub>2</sub>(NCMe)<sub>2</sub>] (0.050 g, 0.154 mmol), HOC(py)<sub>3</sub> (0.045 g, 0.154 mmol) and AgOTf (0.047 g, 0.183 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15 mL) was stirred in the dark for 1 hour. After filtration through diatomaceous earth and in vacuo concentration to 2 mL, addition of hexane (10 mL) caused the precipitation of 1H(OTf) as a microcrystalline green solid, which was washed with hexane and dried under vacuum. Yield: 0.082g, 86%. Anal. Calcd. for C<sub>23</sub>H<sub>20</sub>F<sub>3</sub>MoN<sub>3</sub>O<sub>6</sub>S: C, 44.60; H, 3.25; N, 6.78. Found: C, 44.82; H, 3.12; N, 6.80. IR (CH<sub>2</sub>Cl<sub>2</sub>)vCO (cm<sup>-1</sup>): 1956 vs, 1864 s. <sup>1</sup>H RMN(CD<sub>2</sub>Cl<sub>2</sub>): 10.80 [s<sub>br</sub>, 1H, O-H], 9.30 [s<sub>br</sub>, 2H, H<sub>6</sub> py<sub>coord</sub>], 8.91 [d (4.5), 1H, H<sub>6</sub> py<sub>unc</sub>], 8.17 [s<sub>br</sub>, 2H, H<sub>3</sub> and H<sub>4</sub> py<sub>unc</sub>], 8.04 [m, 2H, H<sub>3</sub> py<sub>coord</sub>], 7.90 [t (7.8), 2H, H<sub>4</sub> py<sub>coord</sub>], 7.58 [m, 1H, H<sub>5</sub> py<sub>unc</sub>], 7.51 [m, 2H, H<sub>5</sub> py<sub>coord</sub>], 3.49 [s, 2H, H<sub>syn</sub>], 1.60 [s, 2H, H<sub>anti</sub>], 1.57 [s, 3H, CH<sub>3</sub> of methallyl]. <sup>13</sup>C{<sup>1</sup>H} NMR(CD<sub>2</sub>Cl<sub>2</sub>): 227.0 [s, CO], 157.2 [s, py], 154.1 [s, py], 148.0 [s, py], 140.7 [s, py], 138.8 [s, py], 125.0 [s, py], 125.0 [s, py], 124.7 [s, py], 124.1 [s, py], 120.0 [c  $(J(C,F)=319.6), CF_3 \text{ of OTf}, 85.5 \text{ [s, } C-OH], 84.5 \text{ [s, } C_c \text{ of methallyl}, 57.2 \text{ [s, } C_t \text{ of methallyl}],$ 19.3 [s, CH<sub>3</sub> of methallyl].

 $[Mo(\eta^3-methallyl)(CO)_2(OC(py)_3)]$  (1).  $K[N(SiMe_3)_2]$  (0.9 mL of 0.5M solution in toluene, 0.45 mmol) was slowly added to a solution of 1H(OTf) (0.260g, 0.45 mmol) in THF (10 mL) at -78 °C and the mixture was stirred for 15 min. After in vacuo evaporation to dryness, the orange residue was extracted with CH<sub>2</sub>Cl<sub>2</sub>, filtered through a silicagel packed columm and evaporated to dryness under vacuum. By slow diffusion of hexane into a concentrated solution of 1 in THF at -20°C orange crystals of X-ray quality were obtained. Yield: 0.082g, 86%. Anal. Calcd. for C<sub>22</sub>H<sub>19</sub>MoN<sub>3</sub>O<sub>3</sub>·C<sub>4</sub>H<sub>8</sub>O: C, 57.68; H, 5.03; N, 7.76. Found: C, 57.44; H, 5.21; N, 8.06. IR (CH<sub>2</sub>Cl<sub>2</sub>)vCO (cm<sup>-1</sup>): 1918 vs, 1820 s. <sup>1</sup>H RMN(CD<sub>2</sub>Cl<sub>2</sub>): 9.09 [s<sub>br</sub>, 2H, H<sub>6</sub> py<sub>coord</sub>], 8.82 [s<sub>br</sub>, 1H, H<sub>6</sub> py<sub>unc</sub>], 8.35 [s<sub>br</sub>, 1H, H<sub>3</sub> py<sub>unc</sub>], 8.15 [s, 2H, H<sub>3</sub> py<sub>coord</sub>], 7.89 [m, 1H, H<sub>4</sub> py<sub>unc</sub>], 7.65 [m, 2H, H<sub>4</sub> py<sub>coord</sub>], 7.37 [m, 1H, H<sub>5</sub> py<sub>coord</sub>], 7.22 [m, 2H, H<sub>5</sub> py<sub>coord</sub>], 3.20 [s, 2H, H<sub>syn</sub>], 1,42 [s, 3H, CH<sub>3</sub> of methallyl], 1.37 [s, 2H, H<sub>anti</sub>].. <sup>13</sup>C{<sup>1</sup>H} NMR(CD<sub>2</sub>Cl<sub>2</sub>): 232.3 [s, CO], 166.1 [s, py] 162.6 [s, py], 152.5 [s, py], 147.1 [s, py], 138.5 [s, py], 137.1 [s, py], 124.1 [s, py], 122.4 [s, 2C, py], 121.9 [s, py], 88.3 [s, C-O], 82.6 [s,  $C_c$  of methallyl], 55.4 [s,  $C_t$  of methallyl], 19.4 [s,  $CH_3$  of methallyl]. Compound 1 can be synthetised either from 1H or 1H(OTf), however the purification is easier when we started from 1H(OTf), since the triflate subproducts are retained in the silicagel columm.

**[Mo(η<sup>3</sup>-methallyl)(CO)<sub>2</sub>(HOC(Ph)(py)<sub>2</sub>)][BAr'<sub>4</sub>] (1'H)**. This compound was synthesized in a similar way than **1**H, starting from [MoCl(η<sup>3</sup>-methallyl)(CO)<sub>2</sub>(NCMe)<sub>2</sub>] (0.100 g, 0.308 mmol), HOC(Ph)(py)<sub>2</sub> (0.081 g, 0.308 mmol) and NaBAr'<sub>4</sub> (0.273 g, 0.308 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15 mL). By slow diffusion of hexane (20 mL) into a concentrated solution of **1**'H in CH<sub>2</sub>Cl<sub>2</sub> at -20 °C red crystals of good quality for the determination of the structure by X-ray analysis were obtained. Yield: 0.370g, 90%. Anal. Calcd. for C<sub>55</sub>H<sub>33</sub>BF<sub>24</sub>MoN<sub>2</sub>O<sub>3</sub>: C, 49.57; H, 2.50; N, 2.10. Found: C, 49.75; H, 2.40; N, 2.25. IR (CH<sub>2</sub>Cl<sub>2</sub>)vCO (cm<sup>-1</sup>): 1955 vs, 1869 s; (KBr) vCO (cm<sup>-1</sup>): 1956 f, 1875 f. <sup>1</sup>H RMN(CD<sub>2</sub>Cl<sub>2</sub>): 9.34 [s<sub>br</sub>, 2H, H<sub>6</sub> py], 7.94 [td (7.8, 1.5), 2H, py], 7.82 [s, 9H, H<sub>o</sub> of BAr'<sub>4</sub> and C-OH], 7.68-7.63 [m, 11H, H<sub>p</sub> of BAr'<sub>4</sub>, Ph and py], 7.53 [m, 2H, py], 3.39 [s, 2H, H<sub>syn</sub>], 1.93 [s, 2H, H<sub>anti</sub>], 1.67 [s, 3H, CH<sub>3</sub> of methallyl]. <sup>13</sup>C RMN CD<sub>2</sub>Cl<sub>2</sub>: 227.4 [s, CO], 161.7 [c (J(C,B)= 49.7), C<sub>i</sub> of BAr'<sub>4</sub>], 156.8 [s, py], 154.4 [s, Ph], 141.2 [s, py], 134.8 [s, C<sub>o</sub> of BAr'<sub>4</sub>], 132.5 [s, Ph], 131.7 [s, py], 129.9 [s, Ph], 129.5 [s, Ph], 128.7 [m, C<sub>m</sub> of BAr'<sub>4</sub>], 125.4 [s, py], 124.6 [s, py], 124.5 [c (J(C,F)= 272.3), CF<sub>3</sub> of BAr'<sub>4</sub>], 117.5 [s, C<sub>p</sub> of BAr'<sub>4</sub>], 88.6 [s, C-OH], 85.9 [s, C<sub>c</sub> of methallyl], 57.0 [s, C<sub>t</sub> of methallyl], 19.5 [s, CH<sub>3</sub> of methallyl].

[**Mo**( $\eta^3$ -**methally**)(**CO**)<sub>2</sub>(**HOC**(**py**)<sub>3</sub>)][**BAr'**<sub>4</sub>]-**THF** (1H-THF). A solution of 1H (0.200g, 0.15 mmol) in 15 mL of CH<sub>2</sub>Cl<sub>2</sub> was added THF (1 mL) and the orange solution was stirred for 15 min. *In vacuo* concentration to a volume of 5 mL , and slow diffusion of hexane (10 mL) at -20 °C afforded orange crystals, one of which was used for a X-ray analysis. Yield: 0.190g, 90%. Anal. Calcd. for C<sub>58</sub>H<sub>40</sub>BF<sub>24</sub>MoN<sub>3</sub>O<sub>4</sub>: C, 49.56; H, 2.87; N, 2.99. Found: C, 49.43; H, 2.95; N, 3.12. IR (CH<sub>2</sub>Cl<sub>2</sub>)vCO (cm<sup>-1</sup>): 1956 vs, 1869 s; (KBr) vCO (cm<sup>-1</sup>): 1958 f, 1873 f. <sup>1</sup>H RMN (CD<sub>2</sub>Cl<sub>2</sub>): 11.31 [s<sub>br</sub>, 1H, O-*H*], 9.44 [s, 2H, *H*<sub>6</sub> py<sub>cord</sub>], 8.91 [s<sub>br</sub>, 1H, *H*<sub>6</sub> py<sub>unc</sub>], 8.20 [s<sub>br</sub>, 1H, *H*<sub>4</sub> py<sub>unc</sub>], 7.75 [s, 4H, *H*<sub>p</sub> of BAr'<sub>4</sub>, 7.57 [t (6.0), 1H, *H*<sub>5</sub> py<sub>unc</sub>], 7.52[t (6.0), 2H, *H*<sub>5</sub> py<sub>unc</sub>], 3.50 [s, 2H, *H*<sub>syn</sub>], 3.43 [s<sub>br</sub>, 4H, THF], 1.78 [s, 2H, *H*<sub>anti</sub>], 1.75 [s<sub>br</sub>, 4H, THF], 1.67 [s, 3H, CH<sub>3</sub> of methallyl]. <sup>13</sup>C{<sup>1</sup>H} NMR(CD<sub>2</sub>Cl<sub>2</sub>): 227.6 [s, CO], 162.0 [c (J(C,B)= 49.8), *C<sub>i</sub>* of BAr'<sub>4</sub>], 156.7 [s, py], 154.0 [s, py], 148.6 [s, py], 141.0 [s, py], 138.6 [s, py], 134.9 [s, *C<sub>o</sub>* of BAr'<sub>4</sub>], 129.2 [m, *C<sub>m</sub>* of BAr'<sub>4</sub>], 125.4 [s, py], 125.3 [s, py], 124.8 [c (J(C,F)= 272.3), *C*F<sub>3</sub> of BAr'<sub>4</sub>], 124.3 [s, py], 117.7 [s, *C<sub>p</sub>* of BAr'<sub>4</sub>], 85.7 [s, *C*-OH], 85.0 [s, *C<sub>c</sub>* of methallyl], 68.0 [s, THF], 56.9 [s, *C<sub>t</sub>* of methallyl], 25.1 [s, THF], 19.3 [s, *CH*<sub>3</sub> of methallyl].

 $[Mo(\eta^3-methallyl)(CO)_2(HOC(py)_3)][BAr'_4]\cdot DMPU$  (1H-DMPU). It was synthesized in a similar way than 1H-THF, from 1H (0.250 g, 0.18 mmol) and DMPU (25 µL, 0.20 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15 mL). After 1hour stirring, the solvent was removed under vacuum and the orange solid was washed with hexane (3 x 5 mL). Orange crystals of quality for the structure S3

determination by x-ray analysis were obtained by slow diffusion at -20 °C of hexane (20 mL) into a concentrated solution of **1**H-DMPU in CH<sub>2</sub>Cl<sub>2</sub>. Yield: 0.260g, 85%. Anal. Calcd. for  $C_{60}H_{44}BF_{24}MoN_5O_4\cdot 2CH_2Cl_2$ : C, 47.71; H, 3.10; N, 4.49. Found: C, 47.49; H, 2.85; N, 4.90. IR (CH<sub>2</sub>Cl<sub>2</sub>)vCO (cm<sup>-1</sup>): 1952 vs, 1864 s, 1558 m <sub>DMPU</sub>; (KBr) vCO (cm<sup>-1</sup>): 1954 f, 1873 f; vCO (cm<sup>-1</sup>) <sub>DMPU</sub> 1559 m. <sup>1</sup>H NMR(CD<sub>2</sub>Cl<sub>2</sub>): 9.30 [s, 2H, *H*<sub>6</sub> py<sub>coord</sub>], 8.87 [s br, 1H, *H*<sub>6</sub> py<sub>unc</sub>], 8.11 [s br, 2H, *H*<sub>4</sub> py<sub>coord</sub>], 8.02 [m, 1H, *H*<sub>4</sub> py<sub>unc</sub>], 7.88 [m, 2H, *H*<sub>3</sub> py<sub>coord</sub>], 7.84 [m, 1H, *H*<sub>3</sub> py<sub>unc</sub>], 7.75 [s, 8*H*<sub>0</sub> of BAr'<sub>4</sub>], 7.54 [m, 7H, *H*<sub>p</sub> of BAr'<sub>4</sub>, *H*<sub>5</sub> py<sub>coord</sub> and py<sub>unc</sub>], 3.36 [s, 2H, *H*<sub>syn</sub>], 3.12 [t(5.9), 4H, DMPU], 2.48 [s, 6H, DMPU], 1.85 [m, 2H DMPU], 1.63 [s, 2H, *H*<sub>anti</sub>], 1.58 [s, 3H, *CH*<sub>3</sub> of methallyl]. <sup>13</sup>C{<sup>1</sup>H} NMR(CD<sub>2</sub>Cl<sub>2</sub>): 230.1 [s, CO], 164.5 [c (J(C,B)= 49.8), *C<sub>i</sub>* of BAr'<sub>4</sub>], 160.3 [s, py], 159.2 [s, *C*O DMPU], 157.6 [s, py], 156.2 [s, py], 150.9 [s, py], 143.1 [s, py], 140.3 [s, py], 137.2 [s, *C<sub>o</sub>* of BAr'<sub>4</sub>], 131.3 [m, *C<sub>m</sub>* of BAr'<sub>4</sub>], 127.9 [s, py], 127.2 [s, py], 127.0 [s, py], 126.9 [c (J(C,F)= 272.3), *C*F<sub>3</sub> of BAr'<sub>4</sub>], 126.8 [s, py], 119.9 [s, *C<sub>p</sub>* of BAr'<sub>4</sub>], 87.6 [s, *C*-OH], 87.3 [s, *C<sub>c</sub>* of methallyl], 59.2 [s, *C<sub>t</sub>* of methallyl], 49.8, 37.6, 23.4 [s, DMPU], 21.6 [s, *C*H<sub>3</sub> of methallyl].

[**Mo**(η<sup>3</sup>-**methally**)(**CO**)<sub>2</sub>(**HOC**(**py**)<sub>3</sub>)][**BAr'**<sub>4</sub>]·**py** (1H-py). Compound 1H-py was prepared as describe above for 1H-THF, starting from 1H (0.100 g, 0.075 mmol) and py (6 μL, 0.075 mmol). Orange crystals of 1H-py were obtained by slow diffusion of hexane into a concentrated CH<sub>2</sub>Cl<sub>2</sub> solution at -20 °C. Yield: 0.086 g, 82%. Anal. Calcd. for C<sub>59</sub>H<sub>37</sub>BF<sub>24</sub>MoN<sub>4</sub>O<sub>3</sub>: C, 50.16; H, 2.64; N, 3.97. Found: C, 50.28; H, 2.45; N, 3.75. IR (CH<sub>2</sub>Cl<sub>2</sub>)vCO (cm<sup>-1</sup>): 1945 vs, 1856 s; (KBr) vCO (cm<sup>-1</sup>): 1945 f, 1859 f. <sup>1</sup>H RMN(CD<sub>2</sub>Cl<sub>2</sub>): 12.90 [s<sub>br</sub>, 1H, O-*H*], 9.28 [s, 2H, *H*<sub>6</sub> py<sub>coord</sub>], 8.67 [d (4.2), 1H, *H*<sub>6</sub> py<sub>unc</sub>], 8.03 [m, 2H, py], 7.87 [m, 7H, py], 7.76 [s, 8*H*<sub>0</sub> of BAr'<sub>4</sub>], 7.59 [s, 4H, *H*<sub>p</sub> of BAr'<sub>4</sub>], 7.48 [m, 5H, py], 3.25 [s, 2H, *H*<sub>syn</sub>], 1.65 [s, 3H, C*H*<sub>3</sub> of methallyl], 1.57 [s, 2H, *H*<sub>anti</sub>], <sup>13</sup>C{<sup>1</sup>H} NMR(CD<sub>2</sub>Cl<sub>2</sub>): 228.5 [s, CO], 162.1 [c (J(C,B)= 49.8), *C<sub>i</sub>* of BAr'<sub>4</sub>], 159.7 [s, py], 156.7 [s, py], 153.6 [s, py], 148.6 [s, py], 143.6 [s, py], 141.9 [s, py], 140.5 [s, py], 138.2 [s, py], 134.8 [s, *C*<sub>o</sub> of BAr'<sub>4</sub>], 129.4 [m, *C*<sub>m</sub> of BAr'<sub>4</sub>], 126.2 [s, py], 125.6 [c (J(C,F)= 272.3), *C*F<sub>3</sub> of BAr'<sub>4</sub>], 124.6 [s, py], 124.3 [s, py], 121.2 [s, py], 117.4 [s, *C*<sub>p</sub> of BAr'<sub>4</sub>], 86.4 [s, *C*-OH], 84.7 [s, *C*<sub>c</sub> of methallyl], 56.4 [s, *C*<sub>1</sub> of methallyl], 19.6 [s, *C*H<sub>3</sub> of methallyl].

[**Mo**( $\eta^3$ -**methallyl**)(**CO**)<sub>2</sub>(**HOC**(**py**)<sub>3</sub>)][**BAr'**<sub>4</sub>]·**TEA** (1H-TEA). It was synthesized in a similar way than 1H-THF, starting from 1H (0.150 g, 0.112 mmol) and TEA (16 µL, 0.112 mmol). By slow diffusion on hexane into a concentrated solution of in CH<sub>2</sub>Cl<sub>2</sub> orange crystals were obtained for an X-ray analysis. Yield: 0.126 g, 78%. Anal. Calcd. for C<sub>60</sub>H<sub>47</sub>BF<sub>24</sub>MoN<sub>4</sub>O<sub>3</sub>: C, 50.23; H, 3.30; N, 3.90. Found: C, 50.36; H, 2.95; N, 3.80. IR (CH<sub>2</sub>Cl<sub>2</sub>)vCO (cm<sup>-1</sup>): 1930 vs, 1837 s; (KBr) vCO (cm<sup>-1</sup>): 1933 f, 1844 f. <sup>1</sup>H RMN (CD<sub>2</sub>Cl<sub>2</sub>): 9.90 [s<sub>br</sub>, 1H, O-H], 9.23 [s, 2H, H<sub>6</sub> py<sub>coord</sub>], 8.76 [s, 1H, H<sub>6</sub> py<sub>unc</sub>], 7.91 [t (7.8), 1H, H<sub>4</sub> py<sub>unc</sub>], 7.82 [s, 8H<sub>o</sub> of BAr'<sub>4</sub>], 7.76 [d (6.9), 2H, H<sub>4</sub> py<sub>unc</sub>], 7.62 [s, 7H, H<sub>p</sub> of BAr'<sub>4</sub>, H<sub>3</sub> py<sub>coord</sub> and py<sub>unc</sub>], 7.47 [t (6.5), 2H, H<sub>5</sub> py<sub>coord</sub>], S4

7.33 [t(6.3), 2H,  $H_5$  py<sub>coord</sub>], 3.48 [s, 2H,  $H_{syn}$ ], 2.67 [m, 6H,  $CH_2$  of TEA], 1.66 [s, 3H,  $CH_3$  of methallyl], 1.54 [s, 2H,  $H_{anti}$ ], 1.01 [t(7.2), 9H,  $CH_3$  of TEA]. <sup>13</sup>C{<sup>1</sup>H} NMR(CD<sub>2</sub>Cl<sub>2</sub>): 230.5 [s, CO], 161.8 [c (J(C,B)= 49.8),  $C_i$  of BAr'<sub>4</sub>], 152.6 [s, py], 149.9 [s, py], 148.6 [s, py], 147.8 [s, py], 139.4 [s, py], 139.2 [s, py], 134.9 [s,  $C_o$  of BAr'<sub>4</sub>], 129.0 [m,  $C_m$  of BAr'<sub>4</sub>], 126.0 [s, py], 124.6 [c (J(C,F)= 272.3),  $CF_3$  of BAr'<sub>4</sub>], 124.5 [s, py], 123.8 [s, py], 122.2 [s, py], 117.5 [s,  $C_p$  of BAr'<sub>4</sub>], 89.4 [s, *C*-OH], 84.0 [s,  $C_c$  of methallyl], 56.0 [s,  $C_t$  of methallyl], 45.2 [s,  $CH_2$  of TEA], 19.7 [s,  $CH_3$  of methallyl], 7.9 [s,  $CH_3$  of TEA].

[**Mo**(η<sup>3</sup>-methallyl)(**CO**)<sub>2</sub>(**HOC**(**py**)<sub>3</sub>)][**BAr'**<sub>4</sub>]-**DB**U (1H-DBU). DBU (23 μL, 0.17 mmol) was added to a solution of **1**H (0.200 g, 0.15 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15 ml) causing orange solution darkness. After stirring for 30 min., the solution was *in vacuo* dried. The residue was washed with hexane (3 x 10 mL), solved in diethylether (10 mL), layered with hexane (25 mL) and placed at -20 °C, affording deep orange crystals, one of which was used for an X-ray analysis. Yield: 0.190 g, 85 %. Anal. Calcd. for C<sub>63</sub>H<sub>48</sub>BF<sub>24</sub>MoN<sub>5</sub>O<sub>3</sub>: C, 50.83; H, 3.25; N, 4.71. Found: C, 50.59; H, 2.90; N, 4.95. IR (CH<sub>2</sub>Cl<sub>2</sub>)vCO (cm<sup>-1</sup>): 1927 vs, 1932 s; (KBr) vCO (cm<sup>-1</sup>): 1929 f, 1843 f. <sup>1</sup>H RMN CD<sub>2</sub>Cl<sub>2</sub>: 11.54 [s, 1H, OH], 9.12 [s br, 2H, H<sub>6</sub> py<sub>coord</sub>], 8.75 [s, 1H, H<sub>6</sub> py<sub>unc</sub>], 7.84 [s, 18*H* of BAr'<sub>4</sub>, H<sub>4</sub> and H<sub>3</sub> of py], 7.33 [m, 3H, H<sub>5</sub> py<sub>coord</sub> and py<sub>unc</sub>], 3.35-1.31 [23H, DBU and methallyl]. <sup>13</sup>C{<sup>1</sup>H} NMR(CD<sub>2</sub>Cl<sub>2</sub>): 231.7 [s, CO], 165.4 [s, py], 162.0 [s, py], 161.7 [c (J(C,B)= 49.8), *C<sub>i</sub>* of BAr'<sub>4</sub>], 152.5 [s, py], 147.5 [s, py], 138.7 [s, py], 137.1 [s, 2C py], 134.8 [s, *C<sub>o</sub>* of BAr'<sub>4</sub>], 128.9 [m, *C<sub>m</sub>* of BAr'<sub>4</sub>], 88.9 [s, *C*-OH], 82.7 [s, *C<sub>c</sub>* of methallyl], 55.4 [s, *C<sub>t</sub>* of methallyl], 54.3, 48.4, 37.5, 32.2, 28.7, 26.4, 23.8, 19.5 [s, DBU], 19.3 [s, CH<sub>3</sub> of methallyl].

Crystal Structure Determination. General Description: Diffraction data for 1H, 1H-THF, 1H-DMPU and 1H-DBU were collected on a Nonius Kappa-CCD diffractometer, using graphite-monochromated Mo-Ka radiation. A semi-empirical absorption correction was performed with

SORTAV.<sup>5</sup> Diffraction data for **1**, **1**'H, **1**H-py and **1**H-TEA were collected on a Oxford Diffraction Xcalibur Nova single crystal diffractometer, using Cu-K $\alpha$  radiation. Empirical absorption corrections were applied using the SCALE3 ABSPACK algorithm as implemented in the program CrysAlis Pro RED (Oxford Diffraction Ltd., 2006).<sup>6</sup> Structures were solved by Patterson interpretation using the program DIRDIF.<sup>7</sup> Isotropic and full matrix anisotropic least square refinements were carried out using SHELXL.<sup>8</sup> X–H hydrogen atom positions (X = O, N) were located in the corresponding Fourier difference maps and were refined riding on their

parent atoms with  $-1.2 U_{eq}$  thermal parameters and restricted X–H bond distances. All the other hydrogen atoms were set in calculated positions and refined riding on their parent atoms. The molecular plots were made with the PLATON program package.<sup>9</sup> The WINGX program system<sup>10</sup> was used throughout the structure determinations. In some of the structures fluorine atoms are affected by some degree of disorder, and therefore, their Ueq are abnormally high. This is a very common feature of the trifluoromethyl groups of the BAr'<sub>4</sub> anion.

CCDC deposition numbers: 786107 (1H), 786108 (1), 786109 (1H-THF), 786110 (1H-DBU), 786111 (1H-DMPU), 786112 (1H-py), 786113 (1H-TEA) and 786114 (1'H). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.



Figure 2S: Thermal ellipsoid (30%) plot of the cation in 1H-DMPU.



Figure 3S: Thermal ellipsoid (30%) plot of the cation in 1H-py.

Figure 4S: Thermal ellipsoid (30%) plot of the cation in 1H-TEA.





Figure 5S: Thermal ellipsoid (30%) plot of the cation in 1'H.



**Figure 6S**: <sup>1</sup>H NMR ( $CD_2Cl_2$ ) of **1**H at different concentrations.



Figure 7S: VT <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>) of 1H-DMPU.



**Figure 8S**: <sup>1</sup>H NMR in CD<sub>2</sub>Cl<sub>2</sub> of the displacement of THF in **1**H-THF after DMPU addition.



Figure 9S: Amplified section (4-1.2 ppm) of the spectra showed above.

b= THF; c= DMPU; Hs, Ha and Me are methallyl signals

## References

- <sup>1</sup> H. Tom Dieck, H. Friedel, J. Organomet. Chem., 1968, 14, 375-385.
- <sup>2</sup> M. Brookhart, B. Grant, A. F. Jr. Volpe, *Organometallics*, **1992**, *11*, 3920-3922.
- <sup>3</sup> R. T. Jonas, T. D. P. Stack, *Inorg. Chem.*, **1998**, *37*, 6615-6629.
- <sup>4</sup> R. K. Boggess, C. E. Heltzell, *Inorg. Chem.*, **1985**, *24*, 2947-2950.
- <sup>5</sup> R. H. Blessing, Acta Cryst. **1995**, A51, 33-38.

- <sup>7</sup> P. T.Beurskens, G. Beurskens, R. de Gelder, J. M. M. Smits, S. García-Granda, R. O. Gould,
- The DIRDIF Program System, version 2008.3; Crystallography Laboratory, University of

Nijmegen: Nijmegen, The Netherlands, 2008.

- <sup>8</sup> G. M.Sheldrick, SHELXL, version 2008. Acta Cryst. 2008, A64, 112.
- <sup>9</sup> A. L. Spek, *PLATON version 1.15: A Multipurpose Crystallographic Tool*; University of Utrecht: Utrecht, The Netherlands, 2008.
- <sup>10</sup> L. J. Farrugia, J. Appl. Crystallogr., **1999**, 32, 837.

<sup>&</sup>lt;sup>6</sup> CrysAlisPro RED, version 1.171.31.7; Oxford Diffraction Ltd.: Oxford, UK, 2009.