Supporting Information

Role of molar-ratio, temperature and solvent on the Zn/Cd 1,2,4-triazolate system with novel topological architectures

Pei-Xiu Yin,^a Jian Zhang,^a Ye-Yan Qin,^a Jian-Kai Cheng,^a Zhao-Ji Li,^a and Yuan-Gen

 Yao^{*a}

^a The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002,

P. R. China

E-mail: yyg@fjirsm.ac.cn

Fig.S1 The IR spectra of complexes 1-5.

Fig. S2 The simulated and experimental XRD diagrams of each compound in this work: (a)-1, (b)-2, (c)-3, (d)-4 and (e)-5, red, experimental data, black, simulated from single-crystal X-ray data.

Fig. S3 (a) Details of the coordination environments of Zn1 and Zn2 in complex **2**. Symmetry codes for generated atoms: A: x, -0.5 - y, z; B: x, 0.5 - y, z; C: 0.5 - x, -y, -0.5 + z; D: -0.5 + x, 0.5 - y, -0.5 - z; E: -0.5 + x, y, -0.5 - z; F: -x, 0.5 + y, -z. (b) 1D chain of $\{Zn(TAZ)_3\}_n^{n-}$ comprising Zn(2). (c) Perspective view of the 3D structure, acetate groups have been omitted for clarity. (d) Schematic representation of the 3D (3,6)-connected net.

Fig. S4 View of two types of 2D substructures of complex **3**: (a) 2D (4, 4) layer and (b) 2D layer based on macrocycle. Symmetry codes for generated atoms: (a) A: -2 - x, -y, -0.5 + z; B: x, -1 + y, z. (b) A: -2 - x, y, z; B: x, 1 + y, z.

Fig. S5 (a) Portion of the 1D tribridged $[Cd(TAZ)Cl_2]_n$ chain in 4. (b) Perspective view of the 3D supramolecular architecture of 4.

Fig. S6 View of two structural motifs in **5** bridged by μ_4 -AmTAZ: (a) μ_4 -AmTAZ bridge Cd(2) into 1D double-bridged chain and (b) μ_4 -AmTAZ link Cd(1) into 2D (4,4) layer . Symmetry codes for generated atoms: (a) A: 1 - x, -0.5 + y, -z; B: x, -1 + y, z; C: 1 - x, 0.5 + y, -z; D: x, 1 + y, z. (b) A: 0.5 - x, -y, 0.5 + z; B: 0.5 - x, 1 - y, 0.5 + z; C: 0.5 - x, 1 - y, -0.5 + z; D: 0.5 - x, -y, -0.5 + z.

Fig. S7 TG-DTA curves of complexes 1-5: (a)-1, (b)-2, (c)-3, (d)-4, (e)-5.

param	1	2	3	4	5
formula	$C_4H_5ZnN_3O_2$	$C_8H_9Zn_2N_9O_2$	$C_{12}H_{20}Cd_3Cl_3N_{11}O_2$	C ₂ H ₅ CdCl ₂ N ₃ O	$C_6H_9Cd_2CIN_{12}$
fw	192.50	394.02	793.97	270.40	509.52
temp(K)	293(2)	293(2)	293(2)	293(2)	293(2)
cryst syst	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
space group	$Pmn2_1$	Pnma	$Cmc2_1$	Imma	Pnma
<i>a</i> (Å)	9.303(6)	7.663(3)	11.856(8)	7.09(2)	16.562(7)
<i>b</i> (Å)	8.413(6)	10.104(4)	12.019(8)	7.24(2)	10.103(4)
<i>c</i> (Å)	8.161(6)	17.426(8)	16.688(12)	11.96(3)	7.904(3)
$V(\text{\AA}^3)$	638.7(8)	1349.2(10)	2378(3)	614(3)	1322.5(9)
Ζ	4	4	4	4	4
$D_{\text{calcd}} (\text{g cm}^{-3})$	2.002	1.940	2.218	2.903	2.559
μ (mm ⁻¹)	3.778	3.575	3.029	4.334	3.432
GOF	1.031	1.107	1.072	1.093	1.079
$\mathrm{R1}^{\mathrm{a}}(I > 2\sigma(I))$	0.0276	0.0312	0.0418	0.0624	0.0254
wR2 ^a (all data)	0.0645	0.0761	0.0956	0.2198	0.0592

Table S1. Crystal Data and Structure Refinements for Compounds 1-5

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| \Sigma |F_{o}|; \quad wR2 = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}] \}^{1/2}, \quad w = 1/[\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP], \text{ where } P = [\max(F_{o}^{2}, 0) + 2F_{c}^{2}] / 3 \text{ for all data.}$

Tuble 52. Sciected bolk	a lenguis (11) and a	ingles () for complexes I	0		
Complex 1					
Zn(1)-O(2)	1.923(4)	Zn(2)-N(1)	2.124(3)		
Zn(1)-O(4)#1	1.936(4)	Zn(2)-O(1)#4	2.140(4)		
Zn(1)-N(3)	2.020(3)	Zn(2)-N(2)#5	2.161(3)		
Zn(1)-N(3)#2	2.020(3)	Zn(2)-N(2)#6	2.161(3)		
Zn(2)-N(1)#3	2.124(3)	Zn(2)-O(3)	2.201 (4)		
O(2)-Zn(1)-O(4)#1	111.88(17)				
O(2)-Zn(1)-N(3)	108.99(11)	O(1)#4-Zn(2)-N(2)#5	92.52(11)		
O(4)#1-Zn(1)-N(3)	113.76(10)	N(1)-Zn(2)-N(2)#6	175.86(11)		
O(2)-Zn(1)-N(3)#2	108.99(11)	N(1)#3-Zn(2)-N(2)#6	90.17(12)		
O(4)#1-Zn(1)-N(3)#2	113.76(10)	O(1)#4-Zn(2)-N(2)#6	92.52(11)		
N(3)-Zn(1)-N(3)#2	98.65(18)	N(2)#5-Zn(2)-N(2)#6	88.32(16)		
N(1)-Zn(2)-N(1)#3	91.07(16)	N(1)-Zn(2)-O(3)	87.34(11)		
N(1)-Zn(2)-O(1)#4	91.40(11)	N(1)#3-Zn(2)-O(3)	87.34(11)		
N(1)#3-Zn(2)-O(1)#4	91.40(11)	O(1)#4-Zn(2)-O(3)	178.21(14)		
N(1)-Zn(2)-N(2)#5	90.17(12)	N(2)#5-Zn(2)-O(3)	88.77(11)		
N(1)#3-Zn(2)-N(2)#5	175.86(11)	N(2)#6-Zn(2)-O(3)	88.77(11)		
Complex 2					
Zn(1)-O(1)	1.975(4)	Zn(2)-N(2)#3	2.153(2)		
Zn(1)-N(6)	1.990(3)	Zn(2)-N(2)#4	2.153(2)		
Zn(1)-N(3)#1	1.994(2)	Zn(2)-N(1)#5	2.171(2)		
Zn(1)-N(3)	1.994(2)	Zn(2)-N(1)	2.171(2)		
Zn(2)-N(4)#2	2.130(3)	Zn(2)-N(5)#6	2.237(3)		
O(1)-Zn(1)-N(6)	105.11(16)				
O(1)-Zn(1)-N(3)#1	100.93(9)	N(2)#4-Zn(2)-N(1)#5	89.15(9)		
N(6)-Zn(1)-N(3)#1	115.86(8)	N(4)#2-Zn(2)-N(1)	90.30(8)		
O(1)-Zn(1)-N(3)	100.93(9)	N(2)#3-Zn(2)-N(1)	89.15(9)		
N(6)-Zn(1)-N(3)	115.86(8)	N(2)#4-Zn(2)-N(1)	176.21(8)		

Table S2. Selected bond	l lengths (Å) and angles (°) for complexes 1-5 ^a
-------------------------	-------------	-----------------	-----------------------------------

N(3)#1-Zn(1)-N(3)	114.97(13)	N(1)#5-Zn(2)-N(1)	90.68(12)
N(4)#2-Zn(2)-N(2)#3	93.48(8)	N(4)#2-Zn(2)-N(5)#6	174.65(11)
N(4)#2-Zn(2)-N(2)#4	93.48(8)	N(2)#3-Zn(2)-N(5)#6	90.28(8)
N(2)#3-Zn(2)-N(2)#4	90.76(12)	N(2)#4-Zn(2)-N(5)#6	90.28(8)
N(4)#2-Zn(2)-N(1)#5	90.30(8)	N(1)#5-Zn(2)-N(5)#6	85.94(8)
N(2)#3-Zn(2)-N(1)#5	176.21(8)	N(1)-Zn(2)-N(5)#6	85.94(8)
	Comp	blex 3	
Cd(1)-N(1)	2.314(7)	Cd(2)-N(6)#4	2.281(10)
Cd(1)-N(1)#1	2.314(7)	Cd(2)-Cl(3)	2.631(3)
Cd(1)-O(1)	2.326(8)	Cd(2)-Cl(1)	2.799(3)
Cd(1)-O(1)#1	2.326(8)	Cd(3)-N(2)	2.251(7)
Cd(1)-N(5)	2.350(10)	Cd(3)-N(2)#1	2.251(7)
Cd(1)-Cl(1)	2.597(3)	Cd(3)-N(4)	2.359(11)
Cd(2)-N(3)#2	2.258(7)	Cd(3)-Cl(2)	2.481(3)
Cd(2)-N(3)#3	2.258(7)	Cd(3)-Cl(3)#5	2.658(4)
N(1)-Cd(1)-N(1)#1	100.6(3)		
N(1)-Cd(1)-O(1)	170.9(4)	N(3)#2-Cd(2)-Cl(3)	97.69(16)
N(1)#1-Cd(1)-O(1)	86.4(3)	N(3)#3-Cd(2)-Cl(3)	97.69(16)
N(1)-Cd(1)-O(1)#1	86.4(3)	N(6)#4-Cd(2)-Cl(3)	87.1(2)
N(1)#1-Cd(1)-O(1)#1	170.9(4)	N(3)#2-Cd(2)-Cl(1)	84.02(15)
O(1)-Cd(1)-O(1)#1	86.0(6)	N(3)#3-Cd(2)-Cl(1)	84.02(15)
N(1)-Cd(1)-N(5)	87.1(2)	N(6)#4-Cd(2)-Cl(1)	86.4(2)
N(1)#1-Cd(1)-N(5)	87.1(2)	Cl(3)-Cd(2)-Cl(1)	173.54(11)
O(1)-Cd(1)-N(5)	87.6(3)	N(2)-Cd(3)-N(2)#1	102.1(4)
O(1)#1-Cd(1)-N(5)	87.6(3)	N(2)-Cd(3)-N(4)	91.1(2)
N(1)-Cd(1)-Cl(1)	92.59(18)	N(2)#1-Cd(3)-N(4)	91.1(2)
N(1)#1-Cd(1)-Cl(1)	92.59(18)	N(2)-Cd(3)-Cl(2)	128.89(18)
O(1)-Cd(1)-Cl(1)	92.8(3)	N(2)#1-Cd(3)-Cl(2)	128.89(18)
O(1)#1-Cd(1)-Cl(1)	92.8(3)	N(4)-Cd(3)-Cl(2)	91.0(2)

N(5)-Cd(1)-Cl(1)	179.5(3)	N(2)-Cd(3)-Cl(3)#5	90.6(2)
N(3)#2-Cd(2)-N(3)#3	146.5(4)	N(2)#1-Cd(3)-Cl(3)#5	90.6(2)
N(3)#2-Cd(2)-N(6)#4	105.2(2)	N(4)-Cd(3)-Cl(3)#5	177.3(2)
N(3)#3-Cd(2)-N(6)#4	105.2(2)	Cl(2)-Cd(3)-Cl(3)#5	86.36(12)
	Com	plex 4	
Cd(1)-N(1)	2.296(10)	Cd(1)-Cl(1)#1	2.638(5)
Cd(1)-N(1)#1	2.296(10)	Cd(1)-Cl(1)#3	2.638(5)
Cd(1)-Cl(1)#2	2.638(5)	Cd(1)-Cl(1)	2.638(5)
N(1)-Cd(1)-N(1)#1	180.0		
N(1)-Cd(1)-Cl(1)#2	91.8(2)	Cl(1)#2-Cd(1)-Cl(1)#3	180.0
N(1)#1-Cd(1)-Cl(1)#2	88.2(2)	Cl(1)#1-Cd(1)-Cl(1)#3	95.9(2)
N(1)-Cd(1)-Cl(1)#1	91.8(2)	N(1)-Cd(1)-Cl(1)	88.2(2)
N(1)#1-Cd(1)-Cl(1)#1	88.2(2)	N(1)#1-Cd(1)-Cl(1)	91.8(2)
Cl(1)#2-Cd(1)-Cl(1)#1	84.1(2)	Cl(1)#2-Cd(1)-Cl(1)	95.9(2)
N(1)-Cd(1)-Cl(1)#3	88.2(2)	Cl(1)#1-Cd(1)-Cl(1)	180.00(17)
N(1)#1-Cd(1)-Cl(1)#3	91.8(2)	Cl(1)#3-Cd(1)-Cl(1)	84.1(2)
	Com	plex 5	
Cd(1)-N(7)	2.309(4)	Cd(2)-N(6)#4	2.296(4)
Cd(1)-N(1)#1	2.330(3)	Cd(2)-N(2)#1	2.337(3)
Cd(1)-N(1)	2.330(3)	Cd(2)-N(2)	2.337(3)
Cd(1)-N(3)#2	2.348(3)	Cd(2)-N(4)#5	2.481(3)
Cd(1)-N(3)#3	2.348(3)	Cd(2)-N(4)#6	2.481(3)
Cd(1)-Cl(1)	2.7622(15)	Cd(2)-Cl(1)	2.6259(14)
N(7)-Cd(1)-N(1)#1	90.60 (11)	N(6)#4-Cd(2)-N(2)#1	91.02(10)
N(7)-Cd(1)-N(1)	90.60(11)	N(6)#4-Cd(2)-N(2)	91.02(10)
N(1)#1-Cd(1)-N(1)	85.86(15)	N(2)#1-Cd(2)-N(2)	95.94(14)
N(7)-Cd(1)-N(3)#2	96.85(10)	N(6)#4-Cd(2)-N(4)#5	100.07(10)
N(1)#1-Cd(1)-N(3)#2	171.68(10)	N(2)#1-Cd(2)-N(4)#5	87.19(10)
N(1)-Cd(1)-N(3)#2	90.34(10)	N(2)-Cd(2)-N(4)#5	168.44(10)

N(7)-Cd(1)-N(3)#3	96.85(10)	N(6)#4-Cd(2)-N(4)#6	100.07(10)
N(1)#1-Cd(1)-N(3)#3	90.34(11)	N(2)#1-Cd(2)-N(4)#6	168.44(10)
N(1)-Cd(1)-N(3)#3	171.68(10)	N(2)-Cd(2)-N(4)#6	87.19(10)
N(3)#2-Cd(1)-N(3)#3	92.44(14)	N(4)#5-Cd(2)-N(4)#6	87.65(15)
N(7)-Cd(1)-Cl(1)	172.84(11)	N(6)#4-Cd(2)-Cl(1)	178.47(11)
N(1)#1-Cd(1)-Cl(1)	84.17(8)	N(2)#1-Cd(2)-Cl(1)	87.96(7)
N(1)-Cd(1)-Cl(1)	84.17(8)	N(2)-Cd(2)-Cl(1)	87.96(7)
N(3)#2-Cd(1)-Cl(1)	88.09(7)	N(4)#5-Cd(2)-Cl(1)	81.02(7)
N(3)#3-Cd(1)-Cl(1)	88.09(7)	N(4)#6-Cd(2)-Cl(1)	81.02(7)

^a Symmetry codes: **1**: #1 -x+1/2, -y+2, z-1/2; #2 -x+1, y, z; #3 -x, y, z; #4 -x+1/2, -y+3, z+1/2; #5 x-1/2, -y+2, z+1/2; #6 -x+1/2, -y+2, z+1/2. **2**: #1 x, -y-1/2, z; #2 -x+1/2, -y, z-1/2; #3 x-1/2, y, -z-1/2; #4 x-1/2, -y+1/2, -z-1/2; #5 x, -y+1/2, z; #6 -x, -y, -z. **3**: #1 -x-2, y, z; #2 x-1/2, y-1/2, z; #3 -x-3/2, y-1/2, z; #4 -x-2, -y, z+1/2; #5 x, y+1, z. **4**: #1 -x-1/2, -y+1/2, z-1/2; #2 -x, -y+1/2, z; #3 x-1/2, y, -z-1/2.**5**: #1 x, -y+1/2, z; #2 -x+1/2, -y, z, y, z-1/2; #3 -x+1/2, y+1/2, z; #4 x+1/2, y, -z+1/2; #5 -x+1, y+1/2, z; #6 -x+1, -y, -z.