Electronic Supplementary Information (ESI)

Novel 3D Lanthanide-Organic Frameworks with an Unusual Infinite Nanosized Ribbon $[Ln_3(\mu_3-OH)_2(-CO_2)_6]^+_n$ (Ln = Eu, Gd, Dy): Syntheses, Structures, Luminescence, and Magnetic Properties

Hai-Juan Zhang,^a Xiao-Zhu Wang,^a Dun-Ru Zhu,^{*,a,b} You Song,^b Yan Xu,^{*,a} Heng Xu,^a Xuan Shen,^a

Ting Gao,^a Min-Xue Huang^a

^aState Key Laboratory of Materials-oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China, ^bState Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China

Scheme S1 The coordination modes of L ligand in complexes 1-3.

Table Stugplementary Material (ESI) for CrystEngCommexes 1-3

	1	a	
O1W-Eu1-O2	70.48(15)	O2W-Eu2-O3	127.31(12)
O1W-Eu1-O3	129.53(13)	O2W-Eu2-O5	125.05(12)
O1W-Eu1-O11	133.49(13)	O2W-Eu2-O18	64.10(12)
O1W-Eu1-O12	133.33(13)	O2W-Eu2-O19	73.60(13)
O1W-Eu1-O20 ⁱ	72.34(12)	O2W-Eu2-O13 ^v	137.39(14)
O1W-Eu1-O8 ⁱⁱ	65.69(12)	O2W-Eu2-O14 ^v	127.50(11)
O1W-Eu1-O6 ⁱⁱⁱ	129.88(13)	O2W-Eu2-O4 ⁱⁱⁱ	72.01(11)
O1 ^{iv} -Eu1-O1W	79.43(14)	O2W-Eu2-O6 ⁱⁱⁱⁱ	77.03(12)
O2-Eu1-O3	144.26(13)	O3-Eu2-O5	77.75(12)
O2-Eu1-O11	76.68(14)	O3-Eu2-O18	84.05(12)
O2-Eu1-O12	126.01(13)	O3-Eu2-O19	148.85(12)
O2-Eu1-O20 ⁱ	79.28(13)	O3- Eu2-O13 ^v	93.51(13)
O2-Eu1-O8 ⁱⁱ	102.32(14)	O3- Eu2-O14 ^v	71.24(11)
O2-Eu1-O6 ⁱⁱⁱ	77.17(13)	O3-Eu2-O4 ⁱⁱⁱ	126.59(11)
O1 ^{iv} -Eu1-O2	146.56(12)	O3-Eu2-O6 ⁱⁱⁱ	69.63(12)
O3-Eu1-O11	96.14(12)	O5-Eu2-O18	73.30(13)
O3-Eu1-O12	65.95(10)	O5-Eu2-O19	71.10(13)
O3-Eu1-O20 ⁱ	131.67(11)	O5-Eu2-O13 v	69.52(14)
O3-Eu1-O8 ⁱⁱ	70.23(10)	O5-Eu2-O14 ^v	105.87(12)
O3-Eu1-O6 ⁱⁱⁱ	67.58(11)	O4 ⁱⁱⁱ - Eu2-O5	136.90(12)
O1 ^{iv} -Eu1-O3	67.83(11)	O5-Eu2-O6 ⁱⁱⁱ	147.37(13)
O11-Eu1-O12	51.77(12)	O18-Eu2-O19	87.07(13)
O11-Eu1-O20 ⁱ	69.89(12)	O13 ^v -Eu2-O18	142.37(14)
O8 ⁱⁱ -Eu1-O11	155.69(12)	O14 ^v -Eu2-O18	154.63(12)
O6 ⁱⁱⁱ -Eu1-O11	70.17(11)	O4 ⁱⁱⁱ -Eu2-O18	136.08(12)
O1 ^{iv} -Eu1-O11	117.11(12)	O6 ⁱⁱⁱ -Eu2-O18	101.93(12)
O12-Eu1-O20 ⁱ	69.77(11)	O13 ^v -Eu2-O19	75.81(13)
O8 ⁱⁱ -Eu1-O12	131.03(11)	O14 ^v -Eu2-O19	117.10(12)
O6 ⁱⁱⁱ -Eu1-O12	96.64(10)	O4 ⁱⁱⁱ -Eu2-O19	78.99(12)
O1 ^{iv} -Eu1-O12	66.94(11)	O6 ⁱⁱⁱ -Eu2-O19	141.52(12)
O8 ⁱⁱ -Eu1-O20 ⁱ	134.24(11)	O13 ^v -Eu2-O14 ^v	48.27(12)
O6 ⁱⁱⁱ -Eu1-O20 ⁱ	137.19(11)	O4 ⁱⁱⁱ -Eu2-O13 ^v	73.61(14)
O1 ^{iv} -Eu1-O20 ⁱ	77.95(12)	O6 ⁱⁱⁱ -Eu2-O13 ^v	112.38(12)
O6 ⁱⁱⁱ -Eu1-O8 ⁱⁱ	85.82(10)	O4 ⁱⁱⁱ -Eu2-O14 ^v	61.60(11)
O1 ^{iv} -Eu1-O8 ⁱⁱ	77.28(12)	$O6^{iii}$ - Eu2-O14 ^v	64.59(10)
O1 ^{iv} -Eu1-O6 ⁱⁱⁱ	135.34(11)	O4 ⁱⁱⁱ -Eu2-O6 ⁱⁱⁱ	68.58(11)
O3-Eu3-O4	76.60(11)	O12-Eu3-O17	74.41(12)
O3-Eu3-O6	99.05(11)	O7 ^{vi} -Eu3-O12	81.83(12)
O3-Eu3-O12	69.21(11)	O12-Eu3-O14 ^{vii}	138.91(12)
O3- Eu3-O17	96.97(12)	O1 ^{iv} -Eu3-O12	66.30(11)
O3-Eu3-O7 ^{vi}	142.34(11)	O7 ^{vi} -Eu3-O17	97.85(12)
O3-Eu3-O14 ^{vii}	143.90(12)	O14 ^{vii} -Eu3-O17	77.08(13)
O1 ^{iv} -Eu3-O3	68.91(11)	O1 ^{iv} -Eu3-O17	140.70(12)
O4- Eu3-O6	69.54(11)	O7 ^{vi} -Eu3-O14 ^{vii}	73.42(13)
O4-Eu3-O12	136.58(11)	O1 ^{iv} -Eu3-O7 ^{vi}	77.80(11)

O4-Eu3-O17	Supplementary Mat	terial (ESI) ifor CrystEngComm Boyal Society of Chemistry 2011	135.57(12)
O4-Eu3-O7 ^{vi}	139.26(12)	Eu1 ^m -O1-Eu3 ^m	99.72(12)
O4-Eu3-O14 ^{vii}	67.43(12)	Eu1-O3-Eu2	108.19(14)
O1 ^{iv} -Eu3-O4	124.37(11)	Eu1-O3-Eu3	101.04(11)
O6-Eu3-O12	140.58(11)	Eu2-O3-Eu3	123.09(13)
O6-Eu3-O17	144.95(12)	Eu1 ^{iv} -O6-Eu3	121.30(12)
O6-Eu3-O7 ^{vi}	88.11(12)	Eu2 ^{iv} -O4-Eu3	105.64(11)
O6-Eu3-O14 ^{vii}	71.62(12)	Eu1 ^{iv} -O6-Eu2 ^{iv}	110.70(14)
O1 ^{iv} -Eu3-O6	74.34(11)	Eu1-O12-Eu3	99.69(11)
Eu2 ^{iv} -O6-Eu3	105.64(11)	Eu2 ^{viii} -O14-Eu3 ^{vii}	92.03(12)
		2^{b}	
O1W-Gd1-O2	70.80(18)	O1W-Gd1-O3	129.20(14)
O1W-Gd1-O11	133.57(14)	O1W-Gd1-O12	132.98(14)
O1W-Gd1-O20 ⁱ	72.15(13)	O1W-Gd1-O7 ⁱⁱ	65.45(14)
O1 ⁱⁱⁱ -Gd1-O1W	78.96(16)	O1W-Gd1-O6 ^{iv}	130.61(15)
O2-Gd1-O3	144.12(13)	O2-Gd1-O11	76.84(14)
O2-Gd1-O12	126.40(14)	O2-Gd1-O20 ⁱ	79.29(14)
O2-Gd1-O7 ⁱⁱ	100.84(15)	O1 ⁱⁱⁱ -Gd1-O2	146.60(12)
O2-Gd1-O6 ^{iv}	77.25(13)	O3-Gd1-O11	96.30(12)
O3-Gd1-O12	65.92(10)	O3-Gd1-O20 ⁱ	131.93(12)
O3-Gd1-O7 ⁱⁱ	70.89(12)	O1 ⁱⁱⁱ -Gd1-O3	67.79(11)
O3-Gd1-O6 ^{iv}	67.46(12)	O11-Gd1-O12	51.92(12)
O11-Gd1-O20 ⁱ	69.80(12)	O7 ⁱⁱ -Gd1-O11	155.23(13)
01 ⁱⁱⁱ -Gd1-O11	117.21(12)	O6 ^{iv} -Gd1-O11	69.93(12)
O12-Gd1-O20 ⁱ	70.01(11)	O7 ⁱⁱ -Gd1-O12	132.04(12)
O1 ⁱⁱⁱ -Gd1-O12	66.92(12)	O6 ^{iv} -Gd1-O12	96.28(11)
O7 ⁱⁱ -Gd1-O20 ⁱ	134.55(13)	O1 ⁱⁱⁱ -Gd1-O20 ⁱ	78.21(12)
O6iv-Gd1-O20 ⁱ	136.89(12)	O1 ⁱⁱⁱ -Gd1-O7 ⁱⁱ	78.41(12)
O6 ^{iv} -Gd1-O7 ⁱⁱ	85.44(12)	O1 ⁱⁱⁱ -Gd1-O6 ^{iv}	135.20(11)
O2W-Gd2-O3	127.77(12)	O2W-Gd2-O5	125.24(14)
O2W-Gd2-O18	64.27(13)	O2W-Gd2-O19	73.45(13)
O2W-Gd2-O13	137.44(15)	O2W-Gd2-O14 ^v	126.93(13)
O2W-Gd2-O4 ^{iv}	71.51(13)	O2W-Gd2-O6 ^{iv}	76.99(12)
O3-Gd2-O5	77.30(13)	O3-Gd2-O18	84.14(12)
O3-Gd2-O19	148.68(12)	O3-Gd2-O13 ^v	92.89(13)
O3-Gd2-O14 ^v	71.45(11)	O3-Gd2-O4 ^{iv}	126.86(11)
O3-Gd2-O6 ^{iv}	69.73(12)	O5-Gd2-O18	73.32(13)
O5-Gd2-O19	71.38(13)	O5-Gd2-O13 ^v	69.85(15)
O5-Gd2-O14 ^v	106.23(12)	O4 ^{iv} -Gd2-O5	137.19(12)
O5-Gd2-O6 ^{iv}	147.01(13)	O18-Gd2-O19	87.14(13)
O13 ^v -Gd2-O18	142.77(14)	O14 ^v -Gd2-O18	154.79(12)
O4 ^{iv} -Gd2-O18	135.75(12)	O6 ^{iv} -Gd2-O18	101.61(12)
O13 ^v -Gd2-O19	76.34(13)	O14 ^v -Gd2-O19	117.03(12)
O4 ^{iv} -Gd2-O19	78.82(12)	O6 ^{iv} -Gd2-O19	141.59(12)
O13 ^v -Gd2-O14 ^v	47.96(13)	$O4^{iv}$ -Gd2-O13 ^v	73.79(14)
O6 ^{iv} -Gd2-O13 ^v	112.11(12)	$O4^{iv}$ -Gd2-O14 ^v	61.49(11)
$O6^{iv}$ -Gd2-O14 ^v	64.54(11)	O4 ^{iv} -Gd2-O6 ^{iv}	68.82(11)
O3-Gd3-O4	76.76(12)	O3-Gd3-O6	99.46(12)

O3-Gd3-O12	Supplementary Materi	al (ESI) <u>for Gryst</u> EngComm	96.59(12)
O3-Gd3-O14 ^{vi}	144.41(12)	03-Gd3-O8 ^{vii}	142.70(12)
O1 ⁱⁱⁱ -Gd3-O3	69.10(11)	O4-Gd3-O6	69.42(11)
O4-Gd3-O12	136.42(11)	O4-Gd3-O17	84.25(12)
O4-Gd3-O14 ^{vi}	67.82(13)	O4-Gd3-O8 ^{vii}	138.92(13)
O1 ⁱⁱⁱ -Gd3-O4	124.42(11)	O6-Gd3-O12	141.00(11)
O6-Gd3-O17	144.81(12)	O6-Gd3-O14 ^{vi}	71.76(12)
O6-Gd3-O8 ^{vii}	88.25(12)	O1 ⁱⁱⁱ -Gd3-O6	74.47(11)
O12-Gd3-O17	74.13(12)	O12-Gd3-O14 ^{vi}	138.37(12)
O8 ^{vii} -Gd3-O12	82.14(12)	O1 ⁱⁱⁱ -Gd3-O12	66.59(11)
O14 ^{vi} -Gd3-O17	76.96(13)	O8 ^{vii} -Gd3-O17	97.59(13)
O1 ⁱⁱⁱ -Gd3-O17	140.71(13)	O8 ^{vii} -Gd3-O14 ^{vi}	72.66(13)
O1 ⁱⁱⁱ -Gd3-O14 ^{vi}	135.47(12)	O1 ⁱⁱⁱ -Gd3-O8 ^{vii}	78.20(12)
Gd1 ^{iv} -O1-Gd3 ^{iv}	99.76(12)	Gd1-O3-Gd2	108.20(14)
Gd1-O3-Gd3	100.85(11)	Gd2-O3-Gd3	123.33(13)
Gd2 ⁱⁱⁱ -O4-Gd3	102.39(12)	Gd1 ⁱⁱⁱ -O6-Gd3	121.17(13)
Gd2 ⁱⁱⁱ -O6-Gd3	105.90(12)	Gd1 ⁱⁱⁱ -O6-Gd2 ⁱⁱⁱ	110.81(14)
Gd1-O12-Gd3	99.76(11)	Gd2 ^{viii} -O14-Gd3 ^{vi}	91.38(12)
		3^{c}	
O1W-Dy1-O2	69.4(2)	O1W-Dy1-O3	129.6(2)
01W-Dy1-011	65.25(19)	O1W-Dy1-O20	71.9(2)
O1W-Dy1-O7 ⁱ	132.5(2)	O1W-Dy1-O8 ⁱ	133.0(2)
O1W-Dy1-O6 ⁱⁱ	130.1(2)	O ⁱⁱⁱ -Dy1-O1W	79.2(2)
O2-Dy1-O3	144.60(19)	O2-Dy1-O11	100.5(2)
O2-Dy1-O20	79.1(2)	O2-Dy1-O7 ⁱ	76.6(2)
O2-Dy1-O8 ⁱ	126.68(19)	O2-Dy1-O6 ⁱⁱ	78.06(19)
O1 ⁱⁱⁱ -Dy1-O2	145.62(19)	O3-Dy1-O11	71.03(17)
O3-Dy1-O20	132.05(18)	O3-Dy1-O7 ⁱ	97.12(18)
O3-Dy1-O8 ⁱ	66.40(16)	O3-Dy1-O6 ⁱⁱ	67.22(16)
O1 ⁱⁱⁱ -Dy1-O3	67.97(17)	O11-Dy1-O20	133.86(18)
07 ⁱ -Dy1-O11	155.75(18)	08 ⁱ -Dy1-O11	132.32(17)
O6 ⁱⁱ -Dy1-O11	85.61(16)	O1 ⁱⁱⁱ -Dy1-O11	77.66(17)
O7 ⁱ -Dy1-O20	69.83(19)	O8 ⁱ -Dy1-O20	69.73(18)
O6 ⁱⁱ -Dy1-O20	137.43(18)	O1 ⁱⁱⁱ -Dy1-O20	78.23(19)
$O7^{i}$ -Dy1-O8 ⁱ	52.64(18)	O6 ⁱⁱ -Dy1-O7 ⁱ	70.20(18)
O1 ⁱⁱⁱ -Dy1-O7 ⁱ	118.37(19)	O6 ⁱⁱ -Dy1-O8 ⁱ	96.71(16)
O1 ⁱⁱⁱ -Dy1-O8 ⁱ	67.39(17)	O1 ⁱⁱⁱ -Dy1-O6 ⁱⁱ	135.10(17)
O2W-Dy2-O3	128.68(18)	O2W-Dy2-O5	124.58(19)
O2W-Dy2-O17	137.3(2)	O2W-Dy2-O19 ^{iv}	73.3(2)
O2W-Dy2-O14 ^v	64.6(2)	O2W-Dy2-O4 ⁱⁱ	71.49(18)
O2W-Dy2- O6 ⁱⁱ	77.30(18)	O3-Dy2-O5	78.00(18)
O3-Dy2-O17	92.09(19)	O3-Dy2-O19 ^{iv}	148.93(19)
O3-Dy2-O14 ^v	84.14(19)	O3-Dy2-O4 ⁱⁱ	126.13(17)
O3-Dy2-O6 ⁱⁱ	69.68(17)	O5-Dy2-O17	69.7(2)
O5-Dy2-O19 ^{iv}	71.0(2)	O5-Dy2-O14 ^v	73.3(2)
O4 ⁱⁱ -Dy2-O5	137.09(18)	O5-Dy2-O6 ⁱⁱ	147.63(18)
O17-Dy2-O19 ^{iv}	75.8(2)	O14 ^v -Dy2-O17	142.9(2)
O4 ⁱⁱ -Dy2-O17	74.08(19)	O6 ⁱⁱ -Dy2-O17	112.29(18)

O14 ^v -Dy2-O19 ^{iv}	Supplementary Materia	al (ESI) <u>för GrystEng</u> Gomm	78.52(19)
O6 ⁱⁱ -Dy2-O19 ^{iv}	141.37(19)	04 ^{ir} -Dy2-O14 ^v	136.12(19)
O6 ⁱⁱ -Dy2-O14 ^v	101.00(19)	O4 ⁱⁱ -Dy2-O6 ⁱⁱ	68.63(17)
O3-Dy3-O4	76.82(17)	O3-Dy3-O6	99.56(17)
O3-Dy3-O8 ⁱ	69.13(17)	O3-Dy3-O13 ^v	96.67(18)
O1 ⁱⁱⁱ -Dy3-O3	68.73(17)	O3-Dy3-O12 ⁱⁱⁱ	141.84(17)
O3-Dy3-O18 ⁱⁱⁱ	145.18(19)	O4-Dy3-O6	69.57(17)
O4-Dy3-O8 ⁱ	136.62(17)	O4-Dy3-O13 ^v	83.96(19)
O1 ⁱⁱⁱ -Dy3-O4	124.44(18)	O4-Dy3-O12 ⁱⁱⁱ	139.88(17)
O4-Dy3-O18 ⁱⁱⁱ	68.64(18)	O6-Dy3-O8 ⁱ	140.94(17)
O6-Dy3-O13 ^v	144.58(18)	O1 ⁱⁱⁱ -Dy3-O6	74.73(17)
O6-Dy3-O12 ⁱⁱⁱ	88.85(18)	O6-Dy3-O18 ⁱⁱⁱ	72.81(18)
O8 ⁱ -Dy3-O13 ^v	74.41(18)	O1 ⁱⁱⁱ -Dy3-O8 ⁱ	66.30(17)
O8 ⁱ -Dy3-O12 ⁱⁱⁱ	80.93(17)	O8 ⁱ -Dy3-O18 ⁱⁱⁱ	136.98(18)
O1 ⁱⁱⁱ -Dy3-O13 ^v	140.69(18)	O12 ⁱⁱⁱ -Dy3-O13 ^v	97.48(19)
O13 ^v -Dy3-O18 ⁱⁱⁱ	75.88(18)	O1 ⁱⁱⁱ -Dy3-O12 ⁱⁱⁱ	78.00(17)
O1 ⁱⁱⁱ -Dy3-O18 ⁱⁱⁱ	136.27(18)	O12 ⁱⁱⁱ -Dy3-O18 ⁱⁱⁱ	72.87(19)
Dy1 ⁱⁱ -O1-Dy3 ⁱⁱ	99.94(18)	Dy1-O3-Dy2	108.34(19)
Dy1-O3-Dy3	100.41(18)	Dy2-O3-Dy3	123.5(2)
Dy2 ⁱⁱⁱ -O4-Dy3	102.71(18)	Dy1 ⁱⁱⁱ -O6-Dy3	121.0(2)
Dy2 ⁱⁱⁱ -O6-Dy3	105.95(19)	Dy1 ⁱⁱⁱ -O6-Dy2 ⁱⁱⁱ	110.83(19)
Dy1 ^{vi} -O8-Dy3 ^{vi}	99.63(18)		

^aSymmetry codes: i) -1 + x, y, z; ii) 2 - x, 1/2 + y, 1/2 - z; iii) x, 1/2 - y, -1/2 + z; iv) x, 1/2 - y, 1/2 + z; v) 3 - x, 1/2 + y, 1/2 - z; vi) 2 - x, -y, 1 - z; vii) 3 - x, -y, 1 - z; viii) 3 - x, -y, 1 - z; viii) 3 - x, -y, 1 - z; viii) 3 - x, -1/2 + y, 1/2 - z. ^bSymmetry codes: i) 1 + x, y, z; ii) -1 - x, y -1/2, 3/2 - z; iii) x, 3/2 - y, z - 1/2; iv) x, 3/2 - y, 1/2 + z; v) -2 - x, y - 1/2, 3/2 - z; vi) -2 - x, 2 - y, 1 - z; vii) -1 - x, 2 - y, 1 - z; viii) -2 - x, 1/2 + y, 3/2 - z. ^cSymmetry codes: i) 1 - x, y - 1/2, 3/2 - z; ii) x, 1/2 - y, z - 1/2; iii) x, 1/2 - y, z - 1/2; iii) x, 1/2 - y, z - 1/2; iii) x, 1/2 - y, 1/2 + z; iv) 1 + x, y, z; v) 2 - x, y - 1/2, 3/2 - z; vi) 1 - x, 1/2 + y, 3/2 - z.

Complexes	D–H…A	d(D–H)	d(H···A)	d(D…A)	∠D–H…A
	O1W–H1WA…O19 ⁱ	0.86(5)	2.01(5)	2.813(6)	155(5)
	O1W–H1WA…O13 ⁱⁱ	0.86(5)	2.44(4)	2.961(6)	120(4)
	O1W–H1WB…O9 ⁱⁱ	0.87(3)	2.25(5)	3.018(6)	148(6)
2^{a}	O2W-H2WA…O3W	0.85(5)	1.93(5)	2.742(6)	159(5)
	O2W-H2WB···O16	0.84(5)	2.21(5)	2.992(6)	155(5)
	C1-H1A…O1W ⁱⁱⁱ	0.93	2.50	3.057(9)	119
	C2–H2A…O19 ^{iv}	0.93	2.51	3.123(7)	124
	O1W-H1WA…O19	0.86(6)	1.91(6)	2.769(8)	176(12)
	O1W-H1WB…O10	0.86(5)	2.37(6)	3.020(9)	133(7)
	O1W–H1WB…O16 ⁱ	0.86(5)	2.59(8)	3.202(9)	130(8)
3^b	O2W–H2WA…O15 ⁱⁱ	0.85(6)	2.15(6)	2.973(9)	161(6)
	O2W-H2WB···O3W	0.84(6)	1.98(7)	2.740(9)	150(6)
	C1–H1A…O1W ⁱⁱⁱ	0.93	2.44	3.011(11)	120
	C2-H2A…O19 ^{iv}	0.93	2.45	3.062(11)	123

Table S2 Hydrogen-bonding geometry (Å, °) for complexes 2-3

^{*a*}Symmetry codes: i) 1 + x, y, z; ii) -1 - x, y - 1/2, 3/2 - z; iii) x, 3/2 - y, 1/2 + z; iv) x, 3/2 - y, z - 1/2. ^{*b*}Symmetry codes: i) x - 1, y, z; ii) 2 - x, y - 1/2, 3/2 - z; iii) x, 1/2 - y, z - 1/2; iv) 1 + x, 1/2 - y, 1/2 + z.

	-		
Complexes	D–H···A / π ··· π	$d(H\cdots\pi) / d(\pi\cdots\pi)$	$\angle C$ –H··· π / dihedral angle
	С34–Н34С…π (С11–16)	3.198	159.2
	C34–H34B…π (C21–26) ⁱ	3.333	159.3
2	С18–Н18С…π (С27–32)	2.886	140.6
	C26–H26A…π (C27–32) ⁱ	3.107	117.9
	π (C5–10)…π (C21–26)	3.815	10.8
3	С10–Н10А…π (С21–26)	3.699	109.9
	С26–Н26А…π (С5–10)	3.484	117.1

Table S3 C-H... π Supplementary Material (ESI) for GryAEngCommcomplexes 2 and 3 mis journal is the Royal Society of Chemistry 2011

Symmetry code: i) -2 - x, 2 - y, 1 - z.

Fig. S1 ORTEP drawing (at 50% probability) of the asymmetric unit for complex 1.

Fig. S2 ORTEP drawing (at 50% probability) of the asymmetric unit for complex 2.

Fig. S3 ORTEP drawing (at 50% probability) of the asymmetric unit for complex 3.

Fig. S4 Ball and stick viewed of 3D framework in 2 from c axis.

Fig. S5 Experimental and simulated X-ray powder diffraction patterns of complex 1.

Fig. S6 Experimental and simulated X-ray powder diffraction patterns of complex 2.

Fig. S7 Experimental and simulated X-ray powder diffraction patterns of complex 3.

Fig. S8 TGA curve for complex 1.

Fig. S10 TGA curve for complex 3.

Fig. S11 Variable-temperature susceptibilities for 2 (\Box) and 3 (\circ) under a field of 100 Oe. The red solid line is the fitting result for 2.

Fig. S12 M-H plot for 3 at 1.8 K.

Fig. S13 AC susceptibilities for **3** in $H_{dc} = 0$ (top) and $H_{ac} = 5$ Oe (bottom).