# Supplementary Material (ESI) for CrystEngComm # This journal is (c) The Royal Society of Chemistry 2010 data_global _journal_name_full CrystEngComm _journal_coden_cambridge 1350 _publ_section_title ; A robust porous PtS-type Cu(II) metal-organic framework: single-crystal-to-single-crystal transformation with reversible guest intercalation accompanied by color change ; _publ_contact_author ; Zhang Lei School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Chian ; _publ_contact_author_email lzhangce@scut.edu.cn data_1' _database_code_depnum_ccdc_archive 'CCDC 798390' #TrackingRef '- 1.cif' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C12 H14 Cu3 N6 O9' _chemical_formula_weight 576.91 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting tetragonal _symmetry_space_group_name_H-M P42/ncm loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y+1/2, z' '-y+1/2, x, z+1/2' 'y, -x+1/2, z+1/2' '-x, y+1/2, -z+1/2' 'x+1/2, -y, -z+1/2' 'y+1/2, x+1/2, -z' '-y, -x, -z' '-x, -y, -z' 'x-1/2, y-1/2, -z' 'y-1/2, -x, -z-1/2' '-y, x-1/2, -z-1/2' 'x, -y-1/2, z-1/2' '-x-1/2, y, z-1/2' '-y-1/2, -x-1/2, z' 'y, x, z' _cell_length_a 14.04550(10) _cell_length_b 14.04550(10) _cell_length_c 14.6075(2) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 2881.71(5) _cell_formula_units_Z 4 _cell_measurement_temperature 273(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min ? _cell_measurement_theta_max ? _exptl_crystal_description block _exptl_crystal_colour blue _exptl_crystal_size_max 0.28 _exptl_crystal_size_mid 0.26 _exptl_crystal_size_min 0.22 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.330 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1148 _exptl_absorpt_coefficient_mu 2.234 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.53000 _exptl_absorpt_correction_T_max 0.70000 _exptl_absorpt_process_details SADABS _exptl_special_details ; ? ; _diffrn_ambient_temperature 273(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'CCD area detector' _diffrn_measurement_method 'phi and omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 35821 _diffrn_reflns_av_R_equivalents 0.0880 _diffrn_reflns_av_sigmaI/netI 0.0560 _diffrn_reflns_limit_h_min -18 _diffrn_reflns_limit_h_max 18 _diffrn_reflns_limit_k_min -18 _diffrn_reflns_limit_k_max 18 _diffrn_reflns_limit_l_min -17 _diffrn_reflns_limit_l_max 19 _diffrn_reflns_theta_min 2.05 _diffrn_reflns_theta_max 27.82 _reflns_number_total 1814 _reflns_number_gt 1029 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'Bruker SMART' _computing_cell_refinement 'Bruker SMART' _computing_data_reduction 'Bruker SAINT' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Bruker SHELXTL' _computing_publication_material 'Bruker SHELXTL' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0774P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1814 _refine_ls_number_parameters 79 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0850 _refine_ls_R_factor_gt 0.0469 _refine_ls_wR_factor_ref 0.1406 _refine_ls_wR_factor_gt 0.1318 _refine_ls_goodness_of_fit_ref 0.950 _refine_ls_restrained_S_all 0.950 _refine_ls_shift/su_max 0.003 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.5000 0.5000 1.0000 0.0399(3) Uani 1 4 d S . . Cu2 Cu 0.16622(4) 0.33378(4) 0.79139(5) 0.0616(3) Uani 1 2 d S . . O1 O 0.3862(2) 0.5239(2) 1.10006(19) 0.0721(9) Uani 1 1 d . . . N1 N 0.4133(2) 0.4133(2) 0.9283(3) 0.0412(10) Uani 1 2 d S . . N2 N 0.2872(2) 0.3568(2) 0.8565(2) 0.0497(9) Uani 1 1 d . . . C1 C 0.3231(3) 0.4304(3) 0.8992(2) 0.0459(10) Uani 1 1 d . . . C2 C 0.2699(4) 0.5212(3) 0.9150(3) 0.0693(14) Uani 1 1 d . . . H2A H 0.2243 0.5302 0.8668 0.104 Uiso 1 1 calc R . . H2B H 0.3138 0.5736 0.9154 0.104 Uiso 1 1 calc R . . H2C H 0.2375 0.5181 0.9728 0.104 Uiso 1 1 calc R . . O2 O 0.1791(2) 0.4532(2) 0.72119(19) 0.0768(10) Uani 1 1 d . . . C3 C 0.1159(4) 0.4615(4) 0.6598(3) 0.0701(13) Uani 1 1 d . . . O3 O 0.2500 0.2500 0.6742(5) 0.114(3) Uani 1 4 d SD . . H3A H 0.224(3) 0.224(3) 0.627(3) 0.10(3) Uiso 1 2 d SD . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.0419(4) 0.0419(4) 0.0359(5) 0.0129(3) 0.0129(3) 0.0122(4) Cu2 0.0736(4) 0.0736(4) 0.0378(5) 0.0158(2) -0.0158(2) 0.0117(4) O1 0.099(3) 0.073(2) 0.0450(17) 0.0215(15) 0.0103(17) -0.0212(17) N1 0.0419(15) 0.0419(15) 0.040(2) 0.0074(15) 0.0074(15) 0.014(2) N2 0.061(2) 0.054(2) 0.0345(17) 0.0035(15) -0.0008(15) 0.0157(16) C1 0.052(3) 0.045(2) 0.041(2) 0.0139(19) 0.0031(19) 0.0150(19) C2 0.068(3) 0.052(3) 0.088(4) 0.007(2) -0.016(3) 0.023(2) O2 0.088(2) 0.088(2) 0.0546(19) 0.0259(17) -0.0271(17) 0.0043(18) C3 0.088(3) 0.080(3) 0.043(3) 0.016(2) -0.010(2) 0.021(3) O3 0.154(5) 0.154(5) 0.036(4) 0.000 0.000 0.032(7) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 N1 2.015(4) 9_667 ? Cu1 N1 2.015(4) . ? Cu1 O1 2.191(3) 9_667 ? Cu1 O1 2.191(3) 8_667 ? Cu1 O1 2.191(3) 16 ? Cu1 O1 2.191(3) . ? Cu2 N2 1.974(3) . ? Cu2 N2 1.974(3) 15_665 ? Cu2 O2 1.974(3) . ? Cu2 O2 1.974(3) 15_665 ? Cu2 O3 2.388(5) . ? O1 C3 1.237(5) 14_656 ? N1 C1 1.357(4) 16 ? N1 C1 1.357(4) . ? N2 C1 1.310(5) . ? N2 N2 1.382(6) 16 ? C1 C2 1.496(5) . ? O2 C3 1.267(5) . ? C3 O1 1.237(5) 14_655 ? C3 C3 1.538(11) 15_665 ? O3 Cu2 2.388(5) 2 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 Cu1 N1 180.00(14) 9_667 . ? N1 Cu1 O1 89.91(12) 9_667 9_667 ? N1 Cu1 O1 90.09(12) . 9_667 ? N1 Cu1 O1 89.91(12) 9_667 8_667 ? N1 Cu1 O1 90.09(12) . 8_667 ? O1 Cu1 O1 77.18(16) 9_667 8_667 ? N1 Cu1 O1 90.09(12) 9_667 16 ? N1 Cu1 O1 89.91(12) . 16 ? O1 Cu1 O1 102.82(16) 9_667 16 ? O1 Cu1 O1 180.000(1) 8_667 16 ? N1 Cu1 O1 90.09(12) 9_667 . ? N1 Cu1 O1 89.91(12) . . ? O1 Cu1 O1 180.000(1) 9_667 . ? O1 Cu1 O1 102.82(16) 8_667 . ? O1 Cu1 O1 77.18(16) 16 . ? N2 Cu2 N2 92.82(18) . 15_665 ? N2 Cu2 O2 91.87(13) . . ? N2 Cu2 O2 175.30(13) 15_665 . ? N2 Cu2 O2 175.30(13) . 15_665 ? N2 Cu2 O2 91.87(13) 15_665 15_665 ? O2 Cu2 O2 83.44(18) . 15_665 ? N2 Cu2 O3 90.11(13) . . ? N2 Cu2 O3 90.11(12) 15_665 . ? O2 Cu2 O3 90.06(13) . . ? O2 Cu2 O3 90.06(13) 15_665 . ? C3 O1 Cu1 112.3(3) 14_656 . ? C1 N1 C1 103.4(5) 16 . ? C1 N1 Cu1 128.3(2) 16 . ? C1 N1 Cu1 128.3(2) . . ? C1 N2 N2 106.6(2) . 16 ? C1 N2 Cu2 133.7(3) . . ? N2 N2 Cu2 119.54(9) 16 . ? N2 C1 N1 111.7(3) . . ? N2 C1 C2 123.6(4) . . ? N1 C1 C2 124.7(4) . . ? C3 O2 Cu2 112.5(3) . . ? O1 C3 O2 125.6(5) 14_655 . ? O1 C3 C3 118.9(3) 14_655 15_665 ? O2 C3 C3 115.5(3) . 15_665 ? Cu2 O3 Cu2 88.4(2) 2 . ? _diffrn_measured_fraction_theta_max 0.998 _diffrn_reflns_theta_full 27.82 _diffrn_measured_fraction_theta_full 0.998 _refine_diff_density_max 0.825 _refine_diff_density_min -0.576 _refine_diff_density_rms 0.077