Supporting Information

Two chiral tetradecanuclear hydroxo-lanthanide clusters with luminescent and magnetic properties

Xi-Li Li,*^a Lai-Fu He,^a Xiang-Li Feng,^a You Song,^{*b} Min Hu,^a Li-Feng Han,^a Xian-Jun Zheng,^a Zhi-Hong Zhang^a and Shao-Ming Fang^{*a}

^aHenan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, China. E-mail: lixl@zzuli.edu.cn; Fax: +86 371 63556510. ^bState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering,

Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, 210093, China.

Materials and methods. All reagents were of commercial origin and were used as received. The C and H microanalyses were carried out with a Perkin-Elmer 240C analyzer. Infrared spectra were performed on TENSOR27 Bruker spectrophotometer with KBr pellets in the 4000 – 400 cm⁻¹ region. Magnetic susceptibility measurements for the crystalline samples were obtained with the use of a Quantum Design MPMS-XL7 SQUID magnetometer in the temperature range 1.8–300 K. The photoluminescence spectra were recorded on a HITACHI F7000 Fluorescence Spectrophotometer at room temperature.

Synthesis of $Dy_{14}(\mu_4-OH)_2(\mu_3-OH)_{16}(\mu-\eta^2-acac)_8(\eta^2-acac)_{16}\cdot 6H_2O$ (1). an aqueous solution of NH₄acac (75 mL, 2 mol/L) was added slowly with stirring to a solution of 0.1 mmol DyCl₃·6H₂O (0.38 g) in 10 mL cold water. NH₃·H₂O (1.0 M) was added to keep pH value being 7.0-7.5 and result in white precipitate. Stirring was continued for about 5 hours. The white precipitate was filtered, washed with sufficient water and air-dried in about 67% yield (based on DyCl₃). The block colorless crystals of **1** were obtained by recrystallization using CH₂Cl₂/petroleum ether mixed solvents (10 mL). Elemental analysis (%) calcd. for **1** (C₁₂₀H₁₉₈O₇₂Dy₁₄): C 28.42, H 3.91; Found: C 28.76, H 3.69. IR data (KBr, cm⁻¹): v 1617 s(C=O stretching), v 3473 m(O–H stretching), v 1517 s(enol C=C stretching in acac).

Synthesis of $Tb_{14}(\mu_4-OH)_2(\mu_3-OH)_{16}(\mu-\eta^2-acac)_8(\eta^2-acac)_{16}\cdot 6H_2O$ (2). This compound was prepared using the same procedure as described above for the synthesis of 1, but using TbCl₃·6H₂O (0.1 mmol, 0.37 g) in place of DyCl₃·6H₂O. The product was obtained as white solids in about 71% yield (based on TbCl₃). The block colorless crystals of 2 were obtained using the same method as that of 1. Anal. Calcd. (found) for 2, $C_{120}H_{198}O_{72}Tb_{14}$ (%): C, 28.69(28.57); H, 3.95(3.72). IR data (KBr, cm⁻¹): v 1617 s(C=O stretching), v 3473 m(O–H stretching), v 1517 s(enol C=C stretching in acac).

Figure S1. The asymmetrical unit of **2** showing thermal ellipsoids at the 50% probability level with labeling Tb atoms. All hydrogen atoms, carbon atoms and lattice water molecules are omitted for clarity. Tb: green; O: red.

Figure S2. The molecular structure of 2. Hydrogen atoms are omitted for clarity.

Figure S3. Polyhedral representation of the structure of $[Tb_{14}(\mu_4-OH)_2(\mu_3-OH)_{16}]^{24+}$ cluster core, in which one octahedral $[Tb_6(\mu_3-OH)_8]^{10+}$ unit shares two opposing apexes (Tb5 and Tb5A atoms) with two $[Tb_5(\mu_4-OH)(\mu_3-OH)_4]^{10+}$ square pyramid units. Tb: cyan; O: red.

(b)

Scheme S1. The representation of structural formation of chiral complex 1, in which the asymmetric unit of 1 (a) changes to its chiral structure (b) by the C_2 chiral axis passing through the Dy6 and Dy8. All hydrogen atoms, carbon atoms and lattice water molecules are omitted for clarity. O: red; Dy: Cyan; C_2 chiral axis: blue.