Supporting Information

Wet chemical Synthesis and magnetic properties of core-shell nanocolumns of Ni(OH)₂@Co(OH)₂ and their oxides

Meng Yao^{*a*}, Weimeng Chen^{*b*}, Xia Fan^{*a*}, Xiangmin Meng^{*c*}, Lin Guo^{*a*} and Chinping Chen^{*b*}

Figure S1. SAED image of the edge of as-prepared Ni(OH)₂@Co(OH)₂ nanocolumns after long time irradiating. The image shows two sets of diffraction patterns, which represents two sets of crystal structures. The bright one belongs to Co(OH)₂ along the [001] direction, and another were due to Co₃O₄ along the [111] direction.

Figure S2. SEM images of the as-prepared samples with the different initial amount of N_2H_4 · H_2O . (a) 0.1 mL; (b) 0.25 mL; (c) 0.5 mL; (d) 3 mL.

Figure S3. SEM images of the as-prepared samples with the different amount of N_2H_4 · H_2O after adding CoCl₂: (a) 3 mL (c) 4 mL (d) 5 mL.

Figure S4. XRD image of the calcination. The diffraction peaks, marked with pentacles, can be indexed to the pure fcc Co_3O_4 (JCPDS No. 42-1467), and those marked with diamonds can be indexed to the pure fcc NiO (JCPDS No. 47-1049).