SUPPLEMENTARY INFORMATION

for

Use of π - π forces to steer the assembly of chromone derivatives into hydrogen bonded supramolecular layers: Crystal

structures and Hirshfeld Surface Analyses

Saikat Kumar Seth^{a,b}, Debayan Sarkar^c, and Tanusree Kar^{*,a}

^a Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata –700032, India;

^b Department of Physics, M. G. Mahavidyalaya, Bhupatinagar, Midnapore(E) 721425, W.B., India;

^c Department of Chemistry, A. B. N. Seal College, Coochbehar 736101, W.B., India.

* Corresponding author e-mail: <u>mstk@iacs.res.in</u>

Fax: +91-33-2473-2805

Table S1. Selected bond lengths (Å), bond angles (°) for the title compounds.

	Compo	Compound 1		Compound 2		Compound 1		Compound 2	
	XRD	DFT	XRD	DFT	MOGUL _(mean) \$	XRD-DFT	XRD-MOGUL	XRD-DFT	XRD-MOGUL
O(1)–C(9)	1.354(2)	1.358	1.366(2)	1.380	1.37(2)	-0.004	-0.016	-0.014	-0.004
O(1)–C(5)	1.372(2)	1.382	1.376(2)	1.393	1.37(1)	-0.010	0.002	-0.017	0.006
O(2)–C(7)	1.231(2)	1.241	1.240(2)	1.244	1.24(2)	-0.010	-0.009	-0.004	0.000
O(3)–C(3)	1.356(2)	1.363			1.37(2)	-0.007	-0.014		
O(3)–C(11)	1.431(2)	1.430			1.42(2)	0.001	0.011		
C(6)–C(1)	1.427(2)	1.428	1.400(2)	1.409	1.40(1)	-0.001	0.027	-0.009	0.000
C(6)–C(7)	1.470(2)	1.478	1.470(2)	1.486	1.46(2)	-0.008	0.010	-0.016	0.010
C(2)–C(1)	1.374(2)	1.387	1.374(2)	1.390	1.39(1)	-0.013	-0.016	-0.016	-0.016
C(8)–C(9)	1.328(2)	1.345	1.345(2)	1.358	1.32(1)	-0.017	0.008	-0.013	0.025
C(8)–C(7)	1.451(2)	1.460	1.443(2)	1.461	1.45(2)	-0.009	0.001	-0.018	-0.007
C(9)-O(1)-C(5)	118.57(11)	118.43	118.89(10)	119.05	118(1)	0.14	0.57	-0.16	0.89
C(5)-C(6)-C(1)	117.20(13)	117.19	117.61(11)	117.61	117(1)	0.01	0.20	0.00	0.61
O(2)–C(7)–C(8)	121.57(13)	121.35	123.59(11)	123.23	120(1)	0.22	1.57	0.36	3.59
O(2)–C(7)–C(6)	123.89(13)	124.37	122.02(12)	122.91	122(1)	-0.48	1.89	-0.89	0.02
C(8)–C(7)–C(6)	114.54(12)	114.28	114.39(11)	113.86	117(1)	0.26	2.46	0.53	-2.61
C(4)-C(5)-C(6)	123.62(13)	123.69	121.88(11)	122.08	122(1)	-0.07	1.62	-0.20	-0.12

C(3)-O(3)-C(11)	117.05(11)	117.46			117(1)	-0.41	0.05			
O(3)–C(3)–C(4)	124.60(13)	124.47			120(4)	0.13	4.60			
O(3)–C(3)–C(2)	115.39(12)	115.57			119(4)	-0.18	-3.61			
C(8)–C(9)–O(1)	123.43(13)	123.85	122.98(11)	122.44	123(1)	-0.42	0.43	0.54	-0.02	
C(9)–C(8)–C(7)–O(2)	179.8(2)	-179.83	-179.77(11)	179.89	179(2)	0.03	0.80	0.12	0.77	
C(11)-O(3)-C(3)-C(4)	6.5(2)	1.31			5(2)	5.19	1.50			
C(11)-O(3)-C(3)-C(2)	-173.9(2)	178.68			176(2)	4.78	2.10			
C(7)-C(8)-C(9)-O(1)	0.1(2)	-0.30	-1.00(18)	-0.38	4(1)	0.20	3.90	0.62	3.00	
C(5)-O(1)-C(9)-C(8)	-0.7(2)	0.13	0.79(16)	0.59	2(1)	0.57	1.30	0.20	1.21	

^sComputer programs used: MOGUL run on the CSD.

Figure S1: Formation of 1D parallel chains running along [0 1 0] direction in **1**.

Figure S2: Formation of 1D parallel chains running along [0 0 1] direction in **1**.

Figure S3: Propagation of 1D zigzag chain along [0 0 1] direction in compound **2**.

Figure S4: Propagation of 1D zigzag chain along [0 1 0] direction in compound **2**.