Supplementary Information for

Structures of Hydro-, Chloro-, and Bromo-substituted Maleimides and 2,6-Diaminopyridines, and of Some of their 1:1 Heterodimers

Tullio Pilati*

ISTM/CNR, c/o Dipartimento di Chimica Fisica ed Elettrochimica, Universita' degli Studi di Milano, via Golgi 19, I-20133, Milano, Italy

Franco Cozzi*

Dipartimento di Chimica Organica e Industriale, Universita' degli Studi di Milano, via Golgi 19, I-20133, Milano, Italy

Contents:

Supplementary Table 1: Refcodes of structures containing a three parallel H-bonds as shown in Fig 1b.

Supplementary Table 2: Main geometric parameters for HBs and XBs in the monomers.

Supplementary Table 3: The HBs in the HMa/HPy structure:

Supplementary Table 4: Main geometric parameters in the halogenated heterodimers.

Figure S1 - S12: ORTEP projection of monomers and heterodimers with numbering schemes.

Figure S13: ORTEP projection for the \Box -polymorph of **ClMa**.

Supplementary Table 1.

Refcodes of structures containing a three parallel H-bonds as shown in Fig 1b (CCDC, version 5.31 updated at august 2010).

BUDWAY10	JICWIB10	QAFSOF	WEWZAA	YONNAQ
EWOBUN	JICWOH10	QOCTUX	WOMGIP	YONQAT
GOXCOL	LULQIS	RADKOX01	WULXUW	YONQEX
HECRIQ	MAWPUW	REGKIX	XAXPIW	ZUKXOS
HIMLUL	MCYTIM10	RUZMOO	XESSAQ	COWSUD
HIMMAS	MINVIP	SEPKON	XIMMOV	QOZFER
HIMMEW	MIWFUU	SEPNEG	XOJVUN	DUJCAN
JICTUK01	MOCNIC	TAZXAU	XUNCUE	
JICVAS10	ODOMIE	VIFKUR	XUNCUE01	
JICVOG20	PANLAS	VIXMOF	YAZRAS	
JICVUM10	POCPED	VIXNAS	YIHCOI	

Supplementary Table 2. Main geometric parameters for HBs and XBs in the monomers. Distances and angles are in Å and °, respectively. Estimated standard deviations of calculated H atoms are omitted, as are those relative to HMa and HPy data, not reported in the original papers.

Monomer	Contact	Contact	A B	H B	A-H B or
	type	A-H B or A-X B	distance	distance	A-X B
					angle
НМа	vertical	N1-H3 O2 _{2-x,-y,-z}	2.884	2.01	170
	lateral	C4-H2 O1 _{3/2-x,1/2+y,-1/2-z}	3.345	2.45	153
	lateral	C2-H1 O1 _{1-x,-y,1-z}	3.307	2.53	139
ClMa	vertical	N1-H1 O2 _{1-x,-y,1-z}	2.816(2)	1.96	172
	XB	C2-Cl1 O1 _{-x,-1/2+y,-1/2-z}	3.078(2)		158.7(6)
	XB	C3-Cl2 O1 _{x,1+y,z}	3.148(2)		170.5(7)
BrMa	vertical	N1-H1 O2 _{-x,-1/2+y,-1/2-z}	2.869(3)	2.02	169
	XB	C2-Br1 O1 _{1-x,1/2+y,1/2-z}	3.202(2)		158.7(7)
	XB	C3-Br2 O1 $_{x,1+y,z}$	3.038(2)		166.7(9)
НРу	vertical	N3-H6 N1 _{1-x,1/2+y,1/2-z}	2.982	1.98	170
	vertical	N2-H4 N2 _{-1/2+X,1/2-Y,-Z}	3.203	2.22	161
	lateral	N2-H5 N3 _{3/2+x,1-y,-1/2+z}	3.066	2.08	166
ClPy	vertical	N2-H2A N1 _{1-x,y,-1/2+z}	3.136(2)	2.25(2)	172(2)
	vertical	N3-H3A N1 _{1-x,y,1/2+z}	3.282(2)	2.45(2)	158(2)
	lateral	N3-H3B N3 _{x,-y,1/2+z}	3.233(2	2.58(2)	136(2)
	lateral	N2-H2B Cl1 _{1/2-x,1/2-y,-1/2+z}	3.491(2)	2.68(2)	159(2)
	XB	C4-Cl2 Cl2 _{x,-y,1/2+z}	3.4562(4)		83.4(3)
BrPy	vertical	N2-H2A N1 _{1-x,1-y,1-z}	3.182(3),	2.35(2)	167(2)
	lateral	N2-H2B Br1 _{3/2-x,1/2-y,-1/2+z}	3.765(2)	3.03(2)	147(2)
	XB	C2-Br2 N1 _{3/2-x,1/2-y,-1/2+z}	3.320(2)		156.9(7)

Supplementary Table 3.

The HBs in the HMa/HPy structure

A-H•••B	d(A•••B) Å	d(H•••B) Å	Angle(A-H•••B) °
N4-H1N4•••N1	2.8346(17)	1.927(18)	179.43(17)
N2-H1N2•••O2	3.203(2)	2.31(2)	162.26(17)
N3-H1N3•••O1	3.124(2)	2.18(2)	170.08(17)
N8-H1N8•••N5	2.827(2)	1.926(18)	176.75(15)
N7-H1N7•••O4	3.022(2)	2.08(2)	177.66(18)
N6-H1N6•••O3	3.247(2)	2.31(2)	171.14(19)
N2-H2N2•••O4 _{x,1/2-y,-1/2+z}	3.071(2)	2.21(2)	170.84(17)
N3-H2N3•••O3 -1+x,1/2-y,-1/2+z	3.121(2)	2.31(2)	164.97(17)
С7-Н7•••О1 -х,1-у,2-z	3.429(2)	2.499(18)	165.99(14)
N7-H2N7•••O2	2.970(2)	2.12(2)	162.76(18)
N6-H2N6•••N3 1+x,y,z	3.447(2)	2.69(2)	147.98(17)
C11-H11•••O1 1+x,y,z	3.446(2)	2.56(2)	160.13(16)

Supplementary Table 4. Main geometric parameters for halogenated heterodimers. MC_d is the centroid of a dimer calculated considering all its atoms and P_d is the relative mean least-squares molecular plane. Distances and angles are in in Å and °, respectively.

	ClMa/HPy	BrMa/HPy	HMa/ClPy	ClMa/ClPy	BrMa/ClPy
Vertical	H1•••N4	H1•••N4	H4•••N1	H4•••N1	H4•••N1
N•••N	2.779(3)	2.773(4)	2.844(3)	2.810(2)	2.796(2)
H•••N	1.87(3)	1.97(4)	2.06(4)	1.99(2)	1.90(3)
N-H•••N	177(2)	175(4)	175(4)	179(2)	179(2)
Vertical	H2A•••O1	H2A•••O1	H2A•••O1	H2A•••O1	H2A•••O1
N•••O	3.081(3)	3.084(4)	3.136(3)	3.107(2)	3.075(2)
Н•••О	2.25(3)	2.19(5)	2.34(3)	2.29(2)	2.25(2)
N-H•••O	177(2)	176(4)	174(3)	175(2)	173(2)
Vertical	H3 A••• O2	H3 4••• O2	H3A•••02	H3A•••O2	H3A•••02
N•••0	3 093(3)	3.047(4)	3 132(3)	3 139(2)	3 147(2)
H•••O	2.28(3)	2.20(5)	235(4)	239(2)	231(2)
N-H•••O	174(2)	170(4)	166(3)	165(2)	175(2)
Lataral					
NaaaO	120.003(3)	2003(4)	2010(3)	3 210(2)	-
Неео	2.903(3) 2.10(3)	2.903(4)	2.919(3) 2.15(3)	3.210(2)	
N-H•••O	158(2)	163(4)	149(3)	143(2)	
Lateral	H3B•••02 ^v	H3B•••O2 ^{vi}	H3B•••02 ^v	H3B•••O2 ^{vii}	H3B•••O2 ^{iv}
N•••O	2.930(3)	2.847(4)	2.917(3)	3.080(2)	3.180(2)
Н•••О	2.16(3)	2.00(4)	2.12(3)	2.25(2)	2.46(2)
N-H•••O	154(2)	155(4)	154(3)	147(2)	145(2)
Lateral				Cl1•••Cl4 ⁱⁱⁱ	Cl1•••Brl ^{vii}
Cl•••X	-	-	-	3.3470(6)	3.3607(7)
C-Cl•••X				150.57(5)	131.64(7)
Cl•••X-C				129.75(4)	149.34(6)
Lateral				Cl2•••Cl3 vii	Cl2•••Br ^{iv}
Cl•••X	-	-	-	3.3068(5)	3.3915(6)
C-Cl•••X				156.81(4)	161.68(6)
Cl•••X-C				121.49(5)	115.72(6)
Vertical [†]			Cl1•••Cl1 ⁱⁱⁱ		Cl1•••Cl1 viii
Cl•••Cl	-	-	3.395(2)	-	3.3536(9)
C-Cl•••Cl			145.52(9)		162.57(7)
Cl•••Cl-C			145.52(9)		162.57(7)
Vertical [†]			Cl2•••Cl2 ^{ix}		$Cl2 \cdot \cdot \cdot Br2^{x}$
Cl•••X	-	-	3.335(2)	-	3.5476(7)
C-Cl•••X			149.42(9)		103.39(6)
Cl•••X-C			149.42(9)		158.72(6)
$P_d \bullet \bullet \bullet P_d^{\ddagger}$	3.330(2)	3.281(2)	3.097(2)	3.218(2)	3.180(2)
	~ /	~ /	4.277(2)	3.248(2)	3.349(2)
MC	3784(2)	3 822(2)	3 558(2)	3 588(2)	3 609(2)
	2.701(2)	2.022(2)	4.277(2)	4.607(2)	5.460(2)

[‡] Calculated on all the atoms; only in the case of **ClMa/HPy** and **BrMa/HPy** the two centroids above and below the central one are equidistant from that. [†] Joning two parallel tapes of dimers. i =1-x, 1-y, -z; ii =1-x, 1-y, 1-z; iii = -x, 2-y, 2-z; iv = -x, -y, 1-z; v = -x, 1-y, 1-z; vi = -x, 1-y, 2-z; vii =2-x, 1-y, 1-z; vii = 2-x, -y, -z; ix = 2-x, 1-y, 2-z; x = x, -1+y, 1+z.

ORTEP projection of **HMa** (CCDC refcode TEKQAB01) with numbering scheme. ADPs at 50% level. H atoms not to scale.

Figure S2.

ORTEP projection of α polymorph of **CIMa** with numbering scheme.

Figure S3.

ORTEP projection of BrMa with numbering scheme.

ADPs at 50% level. H atoms not to scale.

Figure S4.

ORTEP projection of HPy (CCDC refcode FOYLEK) with numbering scheme.

Figure S5.

ORTEP projection of CIPy with numbering scheme.

ADPs at 50% level. H atoms not to scale.

Figure S6.

ORTEP projection of HPy with numbering scheme.

Figure S7.

ORTEP projection of HMa/HPy with numbering scheme.

ADPs at 50% level. H atoms not to scale. A and B indicate the two independent dimers.

Figure S8.

ORTEP projection of ClMa/HPy with numbering scheme.

Figure S9.

ORTEP projection of **BrMa/HPy** with numbering scheme.

ADPs at 50% level. H atoms not to scale.

Figure S10.

ORTEP projection of HMa/ClPy with numbering scheme.

ORTEP projection of ClMa/ClPy with numbering scheme.

ADPs at 50% level. H atoms not to scale.

Figure S12.

ORTEP projection of ClMa/HPy with numbering scheme.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2011

Figure S13.

ORTEP projection of the β polymorph of \mbox{ClMa} with numbering scheme.