Supplementary materials

Semi-organic salts of aniline with inorganic acids: prospective materials for the second harmonic generation

Irena Matulková^{*a,b*}, Jaroslav Cihelka^{*a,c*}, Karla Fejfarová^{*d*}, Michal Dušek^{*d*}, Michaela Pojarová^{*d*}, Přemysl Vaněk^{*c*}, Jan Kroupa^{*c*}, Michal Šála^{*e*}, Radmila Krupková^{*c*}, Ivan Němec^{*b*}

^aJ. Heyrovský Institute of Physical Chemistry ASCR, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic ^bFaculty of Science, Department of Inorganic Chemistry, Charles University in Prague, Hlavova 8, 128 40 Prague 2, Czech Republic ^cInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic

^dInstitute of Physics ASCR, v.v.i., Cukrovarnická 10/112, 162 00 Prague 6, Czech Republic ^eInstitute of Organic Chemistry and Biochemistry ASCR, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

Bond/Angle	Value	An	Angle			
S1-01	1.467(4)	O1-S1-O4	1	108.8(2)		
S1-O2	1.452(3)	O2-S1-O3	3	109.9(2)		
S1-O3	1.485(4)	O2-S1-O4	1	111.1(2)		
S1-O4	1.463(2)	O3-S1-O4	1	108.7(2)		
N1-C1	1.442(4)	N1-C1-C2	2	120.3(5)		
N2-C7	1.451(4)	N1-C1-C	5	119.0(5)		
C1-C2	1.362(8)	C2-C1-C6	5	120.7(4)		
C1-C6	1.391(8)	C1-C2-C3	3	118.6(5)		
C2-C3	1.397(7)	C2-C3-C4	4	120.5(6)		
C3-C4	1.37(1)	C3-C4-C5	5	119.8(5)		
C4-C5	1.35(1)	C4-C5-C6	5	121.2(6)		
C5-C6	1.365(7)	C1-C6-C5	5	119.2(5)		
C7-C8	1.376(9)	N2-C7-C8	8	119.3(5)		
C7-C12	1.359(8)	N2-C7-C	12	119.2(5)		
C8-C9	1.391(7)	C8-C7-C1	C8-C7-C12			
C9-C10	1.38(1)	C7-C8-C9	C7-C8-C9			
C10-C11	1.37(1)	C8-C9-C1	10	120.2(6)		
C11-C12	1.389(7)	C9-C10-C	C11	119.7(5)		
O1-S1-O2	110.4(2)	C10-C11-	·C12	120.7(6)		
O1-S1-O3	107.9(2)	C7-C12-C	C11	119.1(6)		
Hydrogen bonds						
D-HA	d (D-H)	d (AH)	d (DA)	<(DHA)		
N1-H1AO1 ^a	0.87	1.92	2.747(6)	159		
N1-H1B O4 ^b	0.87	1 85	2 713(4)	173		
N1-H1C O3	0.87	1.84	2.696(6)	168		
N2-H2A 01	0.87	2.09	2.890(0) 2.887(5)	153		
N2-H2AO3 ^c	0.87	2.42	2.921(5)	117		
N2-H2B $\Omega 2^d$	0.87	2.00	2.794(A)	150		
N2-H2C03	0.87	2.60	2.946(5)	105		
N2-H2C01 ^e	0.87	2.24	2.968(5)	141		
N2-H2CO4 ^e	0.87	2.40	3.152(7)	145		

Table S1: Selected bond lengths [A°] and angles [°] for an₂SO₄

Note.

Equivalent positions: ^a x, 1+y, z; ^b 3/2-x, 1/2+y, -z; ^c 3/2-x, -1/2+y, 1-z; ^d x, y, 1+z; ^e 3/2-x, 1/2+y, 1-z.

Abbreviations: A, acceptor; D, donor.

Bond/Angle	Value	Angle	Value
Sel-Ol	1.640(2)	O1-Se1-O4	108.7(1)
Se1-O2	1.627(1)	O2-Se1-O3	109.9(1)
Se1-O3	1.637(2)	O2-Se1-O4	112.07(7)
Se1-O4	1.637(1)	O3-Se1-O4	108.7(1)
N1-C1	1.445(2)	N1-C1-C2	119.9(3)
N2-C7	1.454(3)	N1-C1-C6	118.9(3)
C1-C2	1.384(4)	C2-C1-C6	121.2(2)
C1-C6	1.397(5)	C1-C2-C3	118.8(3)
C2-C3	1.389(4)	C2-C3-C4	120.5(3)
C3-C4	1.390(4)	C3-C4-C5	119.6(2)
C4-C5	1.375(4)	C4-C5-C6	121.3(3)
C5-C6	1.378(4)	C1-C6-C5	118.6(2)
C7-C8	1.383(5)	N2-C7-C8	119.5(3)
C7-C12	1.377(5)	N2-C7-C12	119.6(3)
C8-C9	1.383(3)	C8-C7-C12	121.0(2)
C9-C10	1.391(4)	C7-C8-C9	119.5(2)
C10-C11	1.394(5)	C8-C9-C10	119.4(3)
C11-C12	1.366(4)	C9-C10-C11	120.2(2)
O1-Se1-O2	109.0(1)	C10-C11-C12	119.7(3)
O1-Se1-O3	108.35(9)	C7-C12-C11	120.1(3)
Hydrogen bonds			

Table S2: Selected box	nd lengths [A°]	and angles [°]	for an ₂ SeO ₄
------------------------	-----------------	----------------	--------------------------------------

D-HA	d (D-H)	d (AH)	d (DA)	<(DHA)
N1-H1AO1 ^a	0.87	1.88	2.723(3)	163
N1-H1BO4 ^b	0.87	1.90	2.709(2)	154
N1-H1CO3	0.87	1.93	2.696(3)	146
N2-H2AO1	0.87	2.34	2.885(3)	121
N2-H2AO3 ^c	0.87	2.24	2.918(3)	135
$N2-H2BO2^d$	0.87	1.87	2.708(2)	160
N2-H2CO3	0.87	2.18	2.931(3)	145
N2-H2C01 ^e	0.87	2.37	2.972(3)	126

Note.

Equivalent positions: ^a x, 1+y, z; ^b 3/2-x, 1/2+y, -z; ^c 3/2-x, -1/2+y, 1-z; ^d x, y, 1+z; ^e 3/2-x, 1/2+y, 1-z.

Abbreviations: A, acceptor; D, donor.

Bond/Angle	Value	A	ngle	Value
Se1-O1	1.634(4)	O1-Se	1-O1 ^a	109.4(2)
Se1-O2	1.633(3)	O1-Se	1-O2 ^a	108.8(2)
Se1-O1 ^a	1.634(4)	O2-Se	1-01 ^a	108.8(2)
Se1-O2 ^a	1.633(3)	O2-Se	1-O2 ^a	109.6(2)
N1-C1	1.478(7)	O1 ^a -Se	e1-O2 ^a	110.2(2)
C1-C2	1.355(8)	N1-C1	-C2	119.1(5)
C1-C6	1.376(7)	N1-C1	-C6	119.0(5)
C2-C3	1.38(1)	C1-C2	-C3	119.6(6)
C3-C4	1.372(9)	C1-C6	-C5	118.5(5)
C4-C5	1.369(9)	C2-C1	C2-C1-C6	
C5-C6	1.37(1)	C2-C3	-C4	119.0(6)
O3W-H1W	0.74(7)	C3-C4	C5	121.2(7)
O3W-H2W	0.90(7)	C4-C5	-C6	119.8(6)
O1-Se1-O2	110.2(2)	H1W-	O3W-H2W	107(6)
Hydrogen bonds				
D-HA	d (D-H)	d (AH)	d (DA)	<(DHA)
O3W-H1WO1 ^b	0.74(7)	2.14(6)	2.863(6)	167(8)
$O3W-H2WO2^{c}$	0.90(7)	1.94(7)	2.791(6)	157(5)
$N1-H1AO3W^{d}$	0.87	1.95	2.824(6)	176
N1-H1BO2 ^d	0.87	1.91	2.758(6)	165
N1-H1C01	0.87	2.01	2.818(6)	154

Table S3: Selected bond length	s [A°]	and angles	[°]	for an ₂	SeO4 [·] 2H ₂ O
Tuble bet beleeted bella length		und ungrob	L 1	101 u ii	

Note. Equivalent positions: ^a -*x*, *y*, 1/2-*z*; ^b *x*, -1+*y*, *z*; ^c 1/2+*x*, -1/2+*y*, *z*; ^d 1/2+*x*, 1/2+*y*, *z* Abbreviations: A, acceptor; D, donor.

FTIR	Raman	Assignment	FTIR	Raman	Assignment
(cm ⁻¹)	(cm ⁻¹)		(cm ⁻¹)	(cm^{-1})	
	3454 Wb	V (N-HO)	1122 m		Ph (9b), V CN
2254h	3413 Wb	V (N-HO)	1091 sh	1065	Ph (5), ρ NH ₃
5554 mb	3200 yw	v (N-H O)	1000 VW	1065 VW	Pn(1/a) $Ph(15)$
	3071 s	v (IV-II0)	1040 vw	1031 m	$\frac{11}{13}$
	2980 w	?	1005 vw	1006 vs	Ph (12), $\rho \text{ NH}_3^+$
	2927 w	?		993 sh	Ph (12), ρNH_3^+
2733 mb		v (N-HO)	898 s	890 w	$v_3 \text{ SeO}_4^{2-}$
2604 mb	2625 w	v (N-HO)	857 sb	858 m	$v_3 \text{ SeO}_4^{2-}$
2098 wb		v (N-HO)		843 m	$v_3 \text{ SeO}_4^{2-}$
1802 vw		?	832 sb		?
1676 m		$\delta \operatorname{NH_3^+}$		822 s	$v_1 \text{SeO}_4^{2-}$
1642 m		$\delta \mathrm{NH_3}^+$	793 m	794 s	Ph (11), ρNH_3^+ , $\gamma (N-HO)$
1633 sh		$\delta \operatorname{NH_3^+}$	749 s		Ph (11), v CN
1619 m		$\delta \operatorname{NH_3^+}$	741 m		Ph (11), v CN
1607 s	1605 m	Ph (8b), $\delta \operatorname{NH_3^+}$	736 s		Ph (11), γ (X-HO)
1588 s		Ph (8a), $\delta \operatorname{NH}_3^+$	723 sh		Ph (4)
1573 sh		$\delta \mathrm{NH_3}^+$	689 m		Ph (4)
1531 s		$\delta \operatorname{NH_3^+}$	655 mb		?
1498 s	1500 vw	Ph (19a), $\delta_s \text{NH}_3^+$	619 w	619 w	Ph (6b)
1462 m		Ph (19b)	615 w		Ph (6b), γ (X-HO)
1367 sh		Ph (3), δ CCN	535 w		Ph (6a)
1345 w		Ph (14)	522 sh	523 w	Ph (6a)
1341 w		Ph (14)	494 m		δ ССС
1327 w		Ph (14), δ CCN	478 m		Ph (16b), $\rho \text{ NH}_3^+$
1290 w		Ph (3), δ CCN	476 sh		Ph (16b), ρ NH ₃ ⁺
1244 wb		?	455 w		Ph (16a)
1224 w		Ph (9b), δ CCN	426 mb	418 w	Ph (16a), $v_4 \text{ SeO}_4^{2-}$
1213 w		Ph (9a)		391 w	?
1199 w	1205 m	Ph (9a)		359 m	$v_2 \operatorname{SeO_4}^{2-}$
1191 w		Ph (9a)		323 w	External mode
1173 sh	1176 m	Ph (9a)		134 sh	External mode
1163 w		?		116 vs	External mode
1153 m		Ph (9b), ρNH_3^+			

Table S4: FTIR and Raman spectra of an₂SeO₄

Note: Abbreviations and symbols: vs, very strong; s, strong; m, medium; w, weak; b, broad; sh, shoulder; v, stretching; δ , deformation or in-plane bending; γ , π , out-of-plane bending; ρ , rocking; ω , wagging; τ , torsion; s, symmetric; as, antisymmetric; atom X = O, N.

FTIR	Raman	Assignment	FTIR	Raman	Assignment
(cm^{-1})	(cm^{-1})	Assignment	(cm^{-1})	(cm^{-1})	Assignment
	3208 vw	v (X-HO)	1152 w	1158 m	Ph (9b), ρ NH ₃ ⁺
	3067 s	v CH	1125 m		Ph (9b), v CN
3059 w	3059 s	v CH		1104 w	Ph (5), ρNH_3^+
3049 w	3050 sh	v CH	1090 w	1087 w	Ph (5), ρNH_3^+
	3014 vw	v CH	1066 w		Ph (17a)
	2984 w	?	1027 w	1026 m	Ph (18a)
2854 mb		v (X-HO)	1004 w	1003 vs	Ph (12), $\rho \text{ NH}_3^+$
2729 m		v (X-HO)		969 w	Ph (10b), $\rho \text{ NH}_3^+$
	2613 w	v (X-HO)	899 s		$v_3 \operatorname{SeO_4}^{2-}$
2593 mb	2581 w	v (X-HO)		881 m	$v_3 \text{ SeO}_4^{2-}$, Ph (10b)
2361 w		v (X-HO)	867 s		$v_3 \operatorname{SeO_4}^{2-}$
2097 mb		v (X-HO)	840 sh		?
1694 w		$v_3 + v_1 \text{ SeO}_4^{2-}$	832 s	834 vs	$v_1 \text{SeO}_4^{2-}$
1678 w		$\delta \operatorname{NH_3^+}$	792 sh	797 m	Ph (11), $\rho \text{ NH}_{3}^{+}$, $\gamma (X-HO)$
1648 w		$\delta \operatorname{NH_3^+}, \delta \operatorname{H_2O}$	748 s		Ph (11), v CN
1631 sh	1629 m	$\delta \operatorname{NH_3^+}$	740 s	741 w	Ph (11), v CN
1617 sh		$\delta \operatorname{NH_3^+}$	736 s		Ph (11), γ (X-HΟ)
1608 m	1609 m	Ph (8b), $\delta \operatorname{NH_3^+}$	722 sh		Ph (4)
1586 m		Ph (8a), $\delta \operatorname{NH}_3^+$	688 s	689 w	Ph (4)
1570 m		$\delta \operatorname{NH_3^+}$	620 m	617 m	Ph (6b)
1529 m		$\delta \operatorname{NH_3^+}$	615 sh		Ph (6b), γ (X-HO)
1498 s	1500 w	Ph (19a), $\delta_s \text{NH}_3^+$	535 m	534 w	Ph (6a)
1462 w	1462 w	Ph (19b)		525 w	Ph (6a)
	1380 vw	Ph (3), δ CCN	494 m		?
1341 w	1341 vw	?	479 m		Ph (16b), $\rho \text{ NH}_3^+$
1327 w		Ph (14), δ CCN	455 mb	457 m	?
1292 w		Ph (3), δ CCN	423 mb	423 m	Ph (16a), $v_4 \text{ SeO}_4^{2-}$
1225 w	1224 m	Ph (9b), δ CCN	417 sh		Ph (16a), $v_4 \text{ SeO}_4^{2-}$
1214 w	1212 m	Ph (9a)		403 m	?
1198 w		Ph (9a)		335 mb	$v_2 \operatorname{SeO_4}^{2-}$
1189 w	1180 m	Ph (9a)		273 w	External mode
	1173 m	Ph (9a)		165 m	External mode

Table S5: FTIR and Raman spectra of an₂SeO₄·2H₂O

Table S6: FTIR and Raman spectra of an_2SO_4

F	TIR (cm	⁻¹)	F	T Raman (ci	m ⁻¹)	Assistant	F	FTIR (cm^{-1})		n ⁻¹) FT Raman (cm ⁻¹)		Assistment	
298 K	200 K	100 K	298 K	190 K	100 K	Assignment	298 K	200 K	100 K	298 K	190 K	100 K	Assignment
3433 mb	3388 mb	3356 mb				v (N-HO)				1173 m	1173 m	1174 m	Ph (9a)
	3239 mb	3214 m				v (N-HO)				1160 w	1160 w	1161 w	Ph (9b), ρ NH ₃ ⁺
	3146 mb	3123 m				v (N-HO)			1149 s				Ph (9b), $\rho \operatorname{NH_3^+}$
	3068 w	3070 w	3071 m	3071 m	3071 m	v CH, v (N-HO)	1137 s	1139 sb	1136 s	1124 w	1122 w	1125 w	ν ₃ SO ₄ ²⁻ , Ph (9b), ν CN
3060 w	3060 w	3061 w	3061 m	3061 m	3058 m	v CH, v (N-HO)			1105 sh		1106 vw		Ph (5), ρ NH ₃ ⁺
3050 m	3048 w	3046 w	3051 w	3050 w	3048 w	v CH, v (N-HO)			1095 s				$\nu_3 \text{ SO}_4^{2-}$, Ph (5), $\rho \text{ NH}_3^+$
			3025 w	3028 w	3028 w	ν CH, ν (N-HO)	1089 s	1088 sb	1081 s		1089 w	1089 w	$v_3 SO_4^{2-}$, Ph (19b)
			3017 w	3016 w	3015 w	ν CH, ν (N-HO)	1069 s	1070 s	1071 s			1066 w	Ph (15)
			2985 w	2986 w	2987 w	v (N-HO)	1056 s		1057 s				Ph (17a), $v_3 SO_4^{2-}$
2894 sb						ν (N-HO), ν (O-HO)	1026 s	1025 s	1022 s	1027 m	1027 m	1027 m	Ph (18a), γ (O-HO)
2593 sb	2597 sb	2598 sb				v (O-HO)	1003 w	1003 w	1003 w	1004 vs	1004 vs	1004 vs	Ph (12), ρ NH ₃ ⁺
		2394 m				v (O-HO)		981 w	982 w		979 s	982 s	$v_1 SO_4^{2-}$, Ph (10b), ρNH_3^+
	2125 w	2125 w				v (O-HO)		976 w	977 w	976 s			$v_1 SO_4^{2-}$, Ph (10b), ρNH_3^+
2092 mb	2080 mb	2083 mb				?	973 sh	972 w	973 w				Ph (5)
1947 w	1945 w	1947 w				?			968 w				Ph (17a)
1873 w	1874 w	1874 w				?		906 m	907 m				?
1746 w	1747 w	1747 w				?	905 m		904 sh				Ph (10b)
	1688 w	1698 w				$\delta \mathrm{NH_3}^+$	843 w	842 w	844 w				Ph (1), γ (O-HO)
	1643 sh	1645 sh				$\delta \mathrm{NH_3}^+$					820 w	821 w	Ph (10a)
	1627 m	1630 m	1629 w	1627 w	1628 w	$\delta \mathrm{NH_3}^+$				816 w	814 w	814 w	Ph (10a)
	1617 m	1620 m				δNH_3^+	803 w		801 vw	800 m	800 m	800 m	Ph (11), ρ NH ₃ ⁺
		1615 sh				$\delta \mathrm{NH_3}^+$		746 s	747 s				Ph (11), v CN
1608 s	1609 m	1609 m	1608 m	1609 m	1610 m	Ph (8b)	743 s	740 s	740 s		741 vw		Ph (11), v CN
	1600 m	1602 m				Ph (8b), $\delta \operatorname{NH_3^+}$		736 s	736 s				Ph (11)
1589 s	1589 m	1591 m		1600 sh	1598 w	Ph (8a), $\delta \operatorname{NH_3^+}$			721 w				Ph (4)
1574 s	1575 sh	1566 s				δNH_3^+	690 s		690 s				Ph (4)
1555 s	1558 s	1559 sh				δNH_3^+		688 s	688 s				Ph (4)
	1533 m	1530 m				?	641 m	644 m	646 m	644 w	644 vw		Ph (6b)
	1515 sh	1515 sh				?			618 sh	618 w	616 w	619 w	$v_4 SO_4^{2-}$, Ph (6b)
1500 s	1499 s	1498 s	1500 vw	1500 vw		Ph (19a)	615 m	615 m	614 m				$v_4 SO_4^{2-}$
1462 m	1462 m	1462 m	1462 vw	1462 vw	1460 vw	Ph (19b)	607 m	605 m	604 m	607 sh	609 vw	610 vw	$v_4 SO_4^{2-}$
1405 vw						?	533 m	534 m	535 w	533 w	534 w	534 w	Ph (6a)
1390 vw						Ph (3), δ CCN	528 w	527 w	526 w	515 vw	525 vw	524 vw	Ph (6a)
1341 m	1340 m	1339 w				?	490 s	491 s	491 s		493 vw		$v_2 SO_4^{2-}$
1329 w	1329 w	1329 w				Ph (14), δ CCN	478 s	479 s	479 s	453 w	454 w	456 w	$v_2 \text{ SO}_4^{2-}$, Ph (16b), $\rho \text{ NH}_3^+$
	1321 w	1322 w				Ph (14), δ CCN			466 w				Ph (16b), $\rho \text{ NH}_3^+$
1294 m	1293 m	1294 m				Ph (3), δ CCN		454 w	453 w				?
		1229 w	1225 m	1227 m	1229 m	Ph (9b), δ CCN	445 m	445 m	446 m	443 w	445 w	445 w	?
1216 w	1217 w	1217 w	1215 m	1217 m	1217 m	?	419 m	420 m	420 m				Ph (16a)
		1209 w	1206 vw		1204 vw	Ph (9a)			402 m				External mode
1191 w	1197 w	1197 vw	1101	1189 sh	1100	?						186 sh	External mode
			1181 m	1180 m	1180 m	Ph (9a)				174 m	177 m	181 m	External mode

Figure S1 (Supporting Information): Atom numbering of isomorphous crystals of an_2SO_4 and an_2SeO_4 . Dashed lines indicate hydrogen bonds.

Figure S2 (Supporting Information): Atom numbering of **an**₂**SeO**₄·**2H**₂**O**. The dashed lines indicate the hydrogen bonds.

Figure S3 (Supporting Information): FTIR (nujol mull) and FT Raman spectra of an_2SeO_4 . Nujol bands are indicated by asterisks.

Figure S4 (Supporting Information): FTIR (nujol mull) and FT Raman spectra of **an₂SeO₄·2H₂O**. Nujol bands are indicated by asterisks.

Figure S5 (Supporting Information): Correlation diagram of XO_4^{2-} internal modes (X = Se, S) in **an₂SeO₄** and **an₂SO₄** crystals.

_						
	Free ion modes	Degrees of freedom	Free ion XO_4^{2-} T_d	"Site" symmetry C ₁	Factor group C ₂	Vibrational modes
	ν_1	4	A ₁	\backslash	A (IR Ra)	2v. Av. 6v. 6v.
	ν_2	4	Е	$\langle \rangle_{\Lambda}$	$A(\mathbf{II},\mathbf{I}\mathbf{a})$	$2v_1, +v_2, 0v_3, 0v_4$
	ν_3	4	F_2		B(IR Ra)	2v. 4v. 6v. 6v.
	ν_4	4	F_2	/	$\mathbf{D}(\mathbf{II},\mathbf{R}a)$	$2v_1, \pm v_2, 0v_3, 0v_4$

an ₂ SeO ₄ ·2H ₂ O crystals.		

Figure S6 (Supporting Information): Correlation diagram of the SeO_4^{2-} internal modes in

Free ion modes	Degrees of freedom	Free ion Se O_4^{2-} T _d	Site symmetry C ₂	Factor group C _{2h}	Vibrational modes
	4	A_1 –	– A –	- A_g (Ra)	$v_1, 2v_2, 3v_3, 3v_4$
v_2	4	Е —	— A —	- A_u (IR)	$v_1, 2v_2, 3v_3, 3v_4$
v ₃	4	F ₂	$\overline{A} > B$	$-B_{g}$ (Ra)	$v_1, 2v_2, 3v_3, 3v_4$
v_4	4	F ₂ ~	$\overline{A} > B$	$\rightarrow B_u(IR)$	$v_1, 2v_2, 3v_3, 3v_4$

Figure S7 (Supporting Information): FTIR (nujol mull) spectra of an_2SO_4 at the temperature 298 and 100 K. Nujol bands are indicated by asterisks.

Figure S8 (Supporting Information): FT Raman spectra of **an₂SO₄** at the temperature 298 and 100 K.

Figure S9 (Supporting Information): FT Raman spectra of **an**₂**SO**₄ at different temperatures (region of deformation modes of amino group).

