#### **Electronic Supporting Information for:**

## On the vacancy-controlled dealloying of rapidly solidified Mg-Ag

### alloys

Hong Ji, Chi Zhang, Junling Xu, Changchun Zhao, Xiaoguang Wang, Zhonghua Zhang\*

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan 250061, PR China

\* Corresponding author. Email: zh\_zhang@sdu.edu.cn

#### **Experimental procedure:**

Mg-Ag alloys with nominal compositions of  $Mg_{65}Ag_{35}$ ,  $Mg_{62}Ag_{38}$ ,  $Mg_{58}Ag_{42}$ ,  $Mg_{54}Ag_{46}$ , and  $Mg_{50}Ag_{50}$  (at.%) were prepared from pure Mg (99.9 wt.%) and pure Ag (99.9 wt.%) in a quartz crucible using a high-frequency induction furnace in an argon atmosphere. Using a single roller melt spinning apparatus, the prealloyed ingots were remelted in a quartz tube by high-frequency induction heating and then rapidly solidified onto a copper roller at a circumferential speed of ~ 18 m s<sup>-1</sup>.

The dealloying of the Mg<sub>65</sub>Ag<sub>35</sub> and Mg<sub>62</sub>Ag<sub>38</sub> ribbons was firstly performed in the 1 wt. % HCl solution at room temperature. Then the dealloying was continuously carried out in the same solution at 90 ± 5 °C in order to further leach out the residual Mg in the samples. In comparison, no bubbles emerged when the Mg<sub>58</sub>Ag<sub>42</sub> and Mg<sub>54</sub>Ag<sub>46</sub> ribbons were immerged in the 1 wt. % HCl solution at room temperature. Thus the dealloying of the Mg<sub>58</sub>Ag<sub>42</sub> and Mg<sub>54</sub>Ag<sub>46</sub> alloy was directly carried out at 90 ± 5 °C. It is astonishing that the Mg<sub>50</sub>Ag<sub>50</sub> alloy cannot be dealloyed even in the 10 wt.% HCl solution at 90 ± 5 °C.

Microstructural characterization of the rapidly solidified Mg-Ag alloys and as-dealloyed samples was performed using X-ray diffraction (XRD, Hitachi Rigaku D/max-RB) with Cu Kα radiation, scanning electron microscopy (SEM, LEO 1530VP), and X-ray photoelectron spectroscopy (XPS, ESCALAB 250) using monochromatic Al Kα radiation.

#### **Electrochemical measurements:**

Electrochemical measurements were performed in a standard three-electrode cell using an LK 2500A Potentiostat. A 1 M NaCl aqueous solution was chosen as electrolyte to avoid the interference of chemical dealloying. The Mg-Ag ribbons were directly used as the working electrode. The counter electrode was a Pt plate, while the reference electrode was a saturated calomel electrode (SCE). Prior to electrochemical measurements, the electrolytes were deaerated by bubbling with  $N_2$  for 10 min.

# **Figures and Tables:**

 $\begin{array}{l} Mg_{58}Ag_{42}\\ Mg_{54}Ag_{46} \end{array}$ 

 $Mg_{50}Ag_{50}$ 

| with different crystal planes.    |        |        |        |        |        |        |         |
|-----------------------------------|--------|--------|--------|--------|--------|--------|---------|
| crystal plane alloy composition   | (100)  | (110)  | (111)  | (200)  | (210)  | (211)  | average |
| Mg <sub>65</sub> Ag <sub>35</sub> | 0.3341 | 0.3344 | 0.3345 | 0.3344 | 0.3341 | 0.3343 | 0.3343  |
| $Mg_{62}Ag_{38}$                  | 0.3339 | 0.3338 | 0.3338 | 0.3340 | 0.3340 | 0.3339 | 0.3339  |

0.3323

0.3310

0.3303

0.3324

0.3313

0.3305

0.3324

0.3311

0.3305

0.3324

0.3312

0.3306

0.3322

0.3312

0.3304

0.3316

0.3314

0.3302

0.3321

0.3311

0.3302

**Table E1** Lattice parameter (nm) of different Mg-Ag alloys calculated using the Bragg Equation with different crystal planes.



Fig. E1 Plot of lattice parameter vs. Mg content in the rapidly solidified Mg-Ag alloys.



Fig. E2 The SEM micrographs showing the section-view microstructure of the np-Ag by dealloying (a, b)  $Mg_{62}Ag_{38}$  and (c, d)  $Mg_{54}Ag_{46}$  alloys in the 1 wt.% HCl solution.



Fig. E3 The SEM micrographs showing the section-view microstructure of the np-Ag by dealloying the  $Mg_{65}Ag_{35}$  alloy in the 1 wt.% HCl solution for 600 min.



Fig. E4 The SEM micrographs showing the (a) surface-view and (b) section-view microstructure of the rapidly solidified  $Mg_{65}Ag_{35}$  alloy.



**Fig. E5** (a) Mg 2p and (b) Ag 3d XPS spectra of the Mg<sub>65</sub>Ag<sub>35</sub> alloy dealloyed in the 1 wt.% HCl solution for 0, 5, and 40 min.



Fig. E6 The histogram of  $E_{crit}$  vs. vacancy concentration for the rapidly solidified Mg-Ag alloys.