Electronic Supplementary Information for MS:

Reversible Crystal-to-Crystal Transformation of a 3D-3D Coordination Polymer by Solid State Anion-replacement with No Change in Nano-particles Morphology

Vahid Safarifard, Ali Morsali^{*}

Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Islamic Republic of Iran

Experimental Section:

Crystallographic measurements were made at 298K for compounds 1 using a Bruker APEX areadetector diffractometer. The intensity data were collected using graphite monochromataed Mo– K_{α} radiation. The structures were solved by direct methods and refined by full–matrix least– squares techniques on F². Structure solution and refinement was accomplished using SIR97, SHELXL97 and WinGX. Crystal data for 1: orthorhombic space group Pna2₁, a = 8.4799(14) Å, b = 15.706(3) Å, c = 5.7500(10) Å, α = 90, β = 90, γ = 90°, V = 765.8(2) Å³, Z = 4, T = 298(2) K. The refinement of 106 parameters on the basis of 1439 independent reflections (of a total of 3929) converged at R1 = 0.0237, wR2 = 0.0528.

Fig. S1. The coordination environments of the (a) compound $[Pb(L)(\mu_2-Br)(H_2O)]_n$ (1) and (b) compound $[Pb(L)(\mu_{1,1}-NCS)(H_2O)]_n$ (2).

Fig. S2. (a) View of a section of the dimeric units by bridging of the Br⁻ anions via one sides in 1 and (b) View of a section of the dimeric units by bridging of the NCS⁻ anions via one sides in 2.

Fig. S3. The XRD patterns of (a) simulated from single crystal X-ray data of compound 1, (b) bulk materials as synthesized of compound 1, (c) simulated from single crystal X-ray data of compound 2, (d) bulk materials obtained by solid state anion-replacement of compound 1, (e) the reversed species obtained by solid state anion-replacement of compound 2.

Fig. S4. IR spectra of (a) compound 1, (b) bulk materials obtained by solid state anion-replacement of compound 1 and (c) the reversed species obtained by solid state anion-replacement of compound 2.

Fig. S5. Thermal behaviour of compound 1 as bulk and nanoparticles.

Fig. S6. Thermal behaviour of compound 2 as bulk and nano-particle.

Fig. S7. The XRD patterns of (a) simulated from single crystal X-ray data of compound 1, (b) nanoparticles of compound 1 prepared by sonochemical process, (c) simulated from single crystal X-ray data of compound 2, (d) nanoparticles obtained by solid state anion-replacement of compound 1, (e) the reversed species obtained by solid state anion-replacement of compound 2.

Fig. S8. IR spectra of (a) nano-particles of compound 1 produced by sonochemical method, (b) nano-particles of compound 2 obtained by solid state anion-replacement of compound 1 and (c) the reversed nano-particles obtained by solid state anion-replacement of compound 2.

Fig. S9. The SEM image and the corresponding particle size distribution histogram of the reversed species obtained by solid state anion-replacement of compound **2**.

Identification code	Compound 1	Compound 2
Empirical formula	C ₃ H ₄ Br N ₃ O ₃ Pb	$C_4H_4N_4O_3PbS$
Formula weight	417.19	394.35
Temperature	298(2) K	296(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	orthorhombic	monoclinic
Space group	Pna2 ₁	P 2 ₁ /c
Unit cell dimensions	a = 8.4799(14) Å	a = 6.9672(9) Å
	b = 15.706(3) Å	b = 13.4568(16) Å
	c = 5.7500(10) Å	c = 9.6163(12) Å
	α= 90°	$\alpha = 90.00^{\circ}$
	β=90°	$\beta = 110.715(2)^{\circ}$
	$\gamma = 90^{\circ}$	$\gamma = 90.00^{\circ}$
Volume	765.8(2) Å ³	843.302 Å ³
Ζ	4	4
Density (calculated)	3.618 Mg/m ³	3.106 g.cm ⁻³
Absorption coefficient	27.209 mm ⁻¹	20.233 mm ⁻¹
F(000)	736	708
Crystal size	$0.35\times0.21\times0.18\ mm^3$	$0.28\times~0.24\times0.22~mm^3$
Theta range for data collection Index ranges	2.59 to 25.74° -10 \leq h \leq 8	2.72 to 30.33° -8 \leq h \leq 8
	-17≤ k ≤19	$-16 \le k \le 10$
	-7≤ l ≤6	-10≤1≤11
Reflections collected	3929	4158
Independent reflections	1439 [R(int) = 0.0307]	1486[<i>R</i> (int)=0.0354]
Absorption correction	Semi-empirical from equivalents	Integration
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	1439 / 4 / 106	1486 / 0 / 119
Goodness-of-fit on F^2	1.021	1.101
Final R. [I>2sigma(I)] R indices (all data)	$\begin{array}{l} R_1 = 0.0237, \ wR_2 = 0.0528 \\ R_1 = 0.0260, \ wR_2 = 0.0534 \end{array}$	$R_1 = 0.0244, wR_2 = 0.0618$ $R_1 = 0.0256, wR_2 = 0.0624$
Largest diff. Peak, hole	1.343 and -1.659 e.Å ⁻³	1.563 and -2.173 $e.Å^{-3}$

Table S1. Crystal data and structure refinement of $[Pb(L)(\mu_2-Br)(H_2O)]_n$ (1) and $[Pb(L)(\mu_{1,1}-NCS)(H_2O)]_n$ (2).

Pb(1)-N(1)	2.591(6)
Pb(1)-N(3)#1	2.607(7)
Pb(1)-O(1)	2.675(6)
Pb(1)-O(3)	2.707(6)
Pb(1)-O(2)#1	2.745(6)
Pb(1)-Br(1)	2.9363(11)
Pb(1)-Br(1)#2	3.2340(10)
Br(1)-Pb(1)#3	3.2340(10)
O(2)-Pb(1)#4	2.745(6)
N(3)-Pb(1)#4	2.607(7)
N(1)-Pb(1)-N(3)#1	71.2(2)
N(1)-Pb(1)-O(1)	63.85(19)
N(3)#1-Pb(1)-O(1)	73.4(2)
N(1)-Pb(1)-O(3)	151.3(3)
N(3)#1-Pb(1)-O(3)	97.7(3)
O(1)-Pb(1)-O(3)	139.8(2)
N(1)-Pb(1)-O(2)#1	123.38(17)
N(3)#1-Pb(1)-O(2)#1	62.2(2)
O(1)-Pb(1)-O(2)#1	73.18(18)
O(3)-Pb(1)-O(2)#1	68.2(2)
N(1)-Pb(1)-Br(1)	77.86(16)
N(3)#1-Pb(1)-Br(1)	83.94(16)
O(1)-Pb(1)-Br(1)	139.94(13)
O(3)-Pb(1)-Br(1)	74.7(2)
O(2)#1-Pb(1)-Br(1)	124.16(13)
N(1)-Pb(1)-Br(1)#2	70.18(15)
N(3)#1-Pb(1)-Br(1)#2	140.58(15)
O(1)-Pb(1)-Br(1)#2	96.30(15)
O(3)-Pb(1)-Br(1)#2	112.6(2)
O(2)#1-Pb(1)-Br(1)#2	152.19(13)
Br(1)-Pb(1)-Br(1)#2	80.57(2)
Pb(1)-Br(1)-Pb(1)#3	107.58(3)
C(3)-O(1)-Pb(1)	120.4(5)
C(3)-O(2)-Pb(1)#4	118.6(5)
Pb(1)-O(3)-H(3A)	141(5)
Pb(1)-O(3)-H(3B)	99(5)
C(2)-N(1)-Pb(1)	140.4(5)
C(1)-N(1)-Pb(1)	116.0(5)
C(1)-N(3)-Pb(1)#4	116.8(6)
N(2)-N(3)-Pb(1)#4	135.6(5)

Table S2. Bond lengths /Å and angles /^o for $[Pb(L)(\mu_2-Br)(H_2O)]_n$

Symmetry transformations used to generate equivalent atoms: #1 x+1/2, -y+1/2, z; #2 - x+1, -y, z+1/2; #3 -x+1, -y, z-1/2; #4 x-1/2, -y+1/2, z.

$\begin{array}{l} Pb(1)-N(1)\\ Pb(1)-O(1)\\ Pb(1)-N(2)\#1\\ Pb(1)-N(4)\\ Pb(1)-N(4)\#2\\ Pb(1)-O(2)\#1\\ N(1)-Pb(1)-O(1)\\ N(1)-Pb(1)-N(2)\#1\\ O(1)-Pb(1)-N(2)\#1\\ N(1)-Pb(1)-N(4)\\ O(1)-Pb(1)-N(4)\\ N(2)\#1-Pb(1)-N(4)\\ N(1)-Pb(1)-N(4)\#2\\ O(1)-Pb(1)-N(4)\#2\\ O(1)-Pb(1)-N(4)\#2\\ \end{array}$	$\begin{array}{c} 2.525(4)\\ 2.621(4)\\ 2.677(5)\\ 2.699(5)\\ 2.725(5)\\ 2.746(4)\\ 64.69(12)\\ 75.22(15)\\ 105.97(15)\\ 72.49(14)\\ 135.20(13)\\ 73.89(13)\\ 74.23(15)\\ 81.36(13) \end{array}$
$\begin{array}{l} N(2)\#1-Pb(1)-N(4)\\ N(1)-Pb(1)-N(4)\#2\\ O(1)-Pb(1)-N(4)\#2\\ N(2)\#1-Pb(1)-N(4)\#2\\ N(4)-Pb(1)-N(4)\#2\\ N(1)-Pb(1)-O(2)\#1\\ O(1)-Pb(1)-O(2)\#1\\ N(2)\#1-Pb(1)-O(2)\#1\\ N(4)-Pb(1)-O(2)\#1\\ N(4)\#2-Pb(1)-O(2)\#1\\ \end{array}$	73.89(13) 74.23(15) 81.36(13) 141.42(14) 74.87(16) 109.27(13) 76.27(12) 61.79(12) 132.52(13) 152.57(13)

Table S3. Bond lengths /Å and angles /° for $[Pb(L)(\mu_{1,1}-NCS)(H_2O)]_{\mathfrak{g}}.(2)$.

Symmetry transformations used to generate equivalent atoms: for #1 x, -y+1/2, z-1/2; #2 -x+2, -y, -z+1.