
Supporting Information:

Figure S1 shows the XRD pattern of the sintered Bi_2Te_3 target with indexes (JCPDS 89-4302) scanned in the θ -2 θ configuration. The XRD pattern confirmed the existence and the crystal structure of the single phase Bi_2Te_3 .

Fig. S1 the XRD pattern of the sintered Bi_2Te_3 target with indexes (JCPDS 89-4302) scanned in the θ -2 θ configuration.

Figure S2 (a) shows the cross section SEM image and reveals a film thickness of ~1.1 μ m. As can be seen from the top view SEM images, there exists less morphological difference between the thick 0-D nanoparticle film (Fig. S2(b)) and the thinner one (Fig. 1(e)), indicating the thickness independent assembling structure of the present 0-D case.

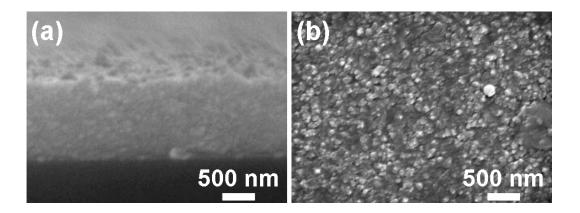


Fig. S2 (a) The cross section and (b) the top view SEM images of the 0-D nanoparticle Bi_2Te_3 film with a film thickness of ~1.1 µm.

Most importantly, the features as observed in the current-voltage (I-V) plot (see Fig. S3(a)) and in the Seebeck coefficient plot (n-type semiconductor) (see Fig. S3(b)) of the thicker 0-D film (~1.1 μ m) are same as the thinner one (~350 nm). The measured room-temperature resistance, electrical conductivity, Seebeck coefficient, and the corresponding power factor is 190 Ω , 219 Scm⁻¹, -94 μ VK⁻¹, and 1.94 μ Wcm⁻¹K⁻² (see Table S1), respectively. Increase of the film thickness from ~350 nm to ~1.1 μ m seems to lead only very slight changes of the thermoelectric related values. Thus, according to these direct experimental evidences, we consider that for 0-D nanoparticle Bi₂Te₃ film, the thickness is not an effective factor for changing or modifying the thermoelectric properties.

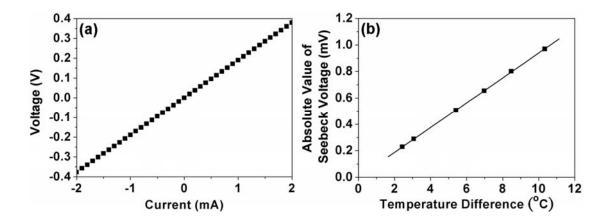


Fig. S3 (a) The I-V curve and (b) the Seebeck voltage plotted as a function of the temperature difference across the 0-D nanoparticle Bi_2Te_3 film with a film thickness of ~1.1 µm.

Table S1 Room-temperature thermoelectric properties of the 0-D nanoparticle Bi_2Te_3 film with a film thickness of ~1.1 μ m.

Sample name	Electrical conductivity	Seebeck coefficient	Power factor
	(Scm^{-1})	(μVK^{-1})	$(\mu W cm^{-1} K^{-2})$
0-D nanoparticle	219	-94	1.94