Supporting information for:

Iron(II) thio- and selenocyanate coordination networks containing 3,3'-bipyridine.

Christopher J. Adams,*^{*a*} Mairi F. Haddow, ^{*a*} David J. Harding, ^{*b*} Thomas J. Podesta^{*a*} and Rachel E. Waddington ^{*a*}

Figure S1: Powder patterns of 2D 3 and 4

- Figure S2: Powder patterns of *trans*-{Fe(NCS)₂(3,3'-bipy)₂(MeOH)₂} 1
- Figure S3: Powder patterns of *trans*-{Fe(NCSe)₂(3,3'-bipy)₂(MeOH)₂} **2**

Figure S4: Powder pattern of 3D 4

Figure S5: TGA of 1

Figure S6: TGA of 2

Figure S1: Powder patterns of the two-dimensional $\{Fe(NCS)_2(3,3'-bipy)_2\}$ grid 3: calculated from the crystal structure (pink), powder synthesised by dropwise addition in acetonitrile (blue), and by thermal decomposition of 1 at 150 °C overnight (green). Pattern of 4 synthesised by thermal decomposition of 2 for comparison (lilac).

Figure S2: Powder patterns of *trans*-{Fe(NCS)₂(3,3'-bipy)₂(MeOH)₂} **1**; calculated (brown), and by precipitation from methanol (blue).

Figure S3: Powder patterns of *trans*-{ $Fe(NCSe)_2(3,3'-bipy)_2(MeOH)_2$ } **2**; Calculated from the crystal structure (brown), and by precipitation from methanol (lilac)

Figure S4: Experimental powder pattern of 4 (blue) compared with a tetragonal model using the cell lengths a = b = 15.60, c = 19.02 Å and atom coordinates based on published structure of $\{Ni(NCS)_2(3,3'-bipy)_2\}$ (with Fe and Se replacing Ni and S respectively).

Figure S5: TGA of 1.

Figure S6: TGA of **2**.