Article title: Construction of helical networks by using multiple V-shaped mixed ligand systems

Authors: Arijit Goswami, Satirtha Sengupta, Raju Mondal*

Journal: CrystEngComm

Manuscript ID: CE-ART-03-2011-005380

Thermal analysis:

In order to characterize the compounds in terms of thermal stability, their thermal behaviors were studied by TGA. The experiment was performed on crystalline samples of **1**, **2**, **3**, **4** and **6** under nitrogen atmosphere with a heating rate of 10°C/min. Both of the

Figure ESI 1: TGA plot for compound 1,2,3,4 and 6

compounds **1** and **2** do not show any significant weight loss upto 400° C and 450° C, respectively. After that both the compounds start degrading rapidly. This is in good agreement with the crystal structure supporting the absence of any trapped solvent molecule inside the framework. Compound **3**, however, shows almost 25% weight loss around 150° C indicating the removal of the solvent molecules. No further weight loss is observed upto 350° C and thereafter rapid degradation takes place. Compound **4** also shows an approximate 20% weight loss between room temperature and 275° C corresponding to the removal of the trapped solvent molecules and after that it starts degrading quickly. Compound **6** shows a 25% weight loss *ca*. 200° C corresponding to the removal of water molecules present in the framework and then shows a rapid degradation.

TOPOS data of Compound 1.

1:C25 H24 N4 O5 Zn

Structure consists of molecules (ZD1). The composition of molecule is Zn

Topology for ZD1

Atom ZD1 links by bridge ligands and has

Common vertex with			R(A-A)		f Total SA	
ZD 1	1.3012	1.6988	0.9167	(110)	9.649A	1 23.72
ZD 1	-0.6988	-0.3012	0.9167	(-1-1 0)	9.649A	1 23.72
ZD 1	1.6988	1.3976	0.7500	(11-1)	14.181A	1 26.28
ZD 1	-0.3976	-0.6988	1.0833	(0-10)	14.181A	1 26.28

Structural group analysis

Structural group No 1

Structure consists of 3D framework with ZD

Coordination sequences

ZD1: 1 2 3 4 5 6 7 8 9 10

Num 4 12 36 72 122 188 264 354 456 570

Cum 5 17 53 125 247 435 699 1053 1509 2079

TD10=2079

Vertex symbols for selected sublattice

ZD1 Point (Schlafli) symbol: {7^5;9}

Extended point symbol: [7(2).9(2).7(3).7(3).7(3).7(3)]

Point (Schlafli) symbol for net: {7⁵;9}

4-c net; uninodal net

Topological type: qzd quartz-dual, "dense" net (topos&RCSR.ttd) $\{7^5;9\}$ - VS [7(2).*.7(3).7(3).7(3).7(3)] (67371 types in 9 databases)

Non-equivalent circuits

Circuit No 1; Type=7a; Centroid: (0.787,0.213,0.917)

Atom x y z

- ZD1 0.3012 0.6988 0.9167
- ZD1 -0.3976 -0.6988 1.0833
- ZD1 -0.3976 -1.6988 1.0833
- ZD1 0.3012 -0.3012 0.9167
- ZD1 1.3012 0.6988 0.9167
- ZD1 2.6988 1.3976 0.7500
- ZD1 1.6988 1.3976 0.7500

Circuit No 2; Type=7b; Centroid: (0.215,0.785,0.917)

Atom x y z

- ZD1 0.3012 0.6988 0.9167
- ZD1 -0.3976 -0.6988 1.0833
- ZD1 -0.3976 0.3012 1.0833
- ZD1 0.3012 1.6988 0.9167
- ZD1 -0.6988 0.6988 0.9167
- ZD1 0.6988 1.3976 0.7500

ZD1 1.6988 1.3976 0.7500

Circuit No 3; Type=9a; Centroid: (0.679,0.321,0.917)

Atom	x y z
ZD1	0.3012 0.6988 0.9167
ZD1	1.3012 1.6988 0.9167
ZD1	0.6024 0.3012 1.0833
ZD1	0.6024 -0.6988 1.0833
ZD1	1.3012 0.6988 0.9167
ZD1	0.3012 -0.3012 0.9167
ZD1	1.6988 0.3976 0.7500
ZD1	0.6988 0.3976 0.7500
ZD1	-0.6988 -0.3012 0.9167

Circuit No 4; Type=9b; Centroid: (0.234,0.766,0.917)

-----Atom x y z -----ZD1 0.3012 0.6988 0.9167 ZD1 -0.6988 -0.3012 0.9167 -1.3976 -1.6988 1.0833 ZD1 ZD1 -1.3976 -0.6988 1.0833 ZD1 -0.6988 0.6988 0.9167 ZD1 $0.3012 \ 1.6988 \ 0.9167$ ZD1 1.6988 2.3976 0.7500 ZD1 2.6988 2.3976 0.7500

Elapsed time: 5.83 sec.

Table S-1: Selected Bond Lengths (A°) and Angles (°) for Compounds 1-9						
Com	pound 1	Compound 2				
Zn ₁ -O ₁ 1.939(5)	O_1 -Zn ₁ - O_1^{-1} 106.2(3)	Co ₁ -O ₁ 1.930(2)	O_1 - Co_1 - O_1^1 108.90(15)			
$Zn_1 - O_1^{i}$ 1.939(5)	O_1 -Zn ₁ -N ₁ 114.4(2)	$Co_1 - O_1^{i}$ 1.930(2)	O ₁ -Co ₁ -N ₁ 114.73(11)			
Zn_1-N_1 1.974(5)	O_1^{i} -Zn ₁ -N ₁ 100.2(2)	Co ₁ -N ₁ 1.995(3)	$O_1^{i}-Co_1-N_1$ 100.23(1)			
Zn ₁ -N ₁ ⁱ 1.974(5)	O_1 -Zn ₁ -N ₁ ⁱ 100.2(2)	$Co_1 - N_1^{i}$ 1.995(3)	O_1 - Co_1 - N_1^{i} 100.23(11)			
	O_1^{i} -Zn ₁ -N ₁ ⁱ 114.4(2)		O_1^{i} -Co ₁ -N ₁ ⁱ 114.73(11)			
	N_1 -Zn ₁ - N_1^{i} 121.0(4)		N_1 -Co ₁ - N_1^{i} 118.35(18)			
Con	pound 3	Compound 4				

				O ₄ -Cu ₁ -N ₁ 94.21(14)
Ni ₁ -O ₃ ⁱⁱ	2.021(3)	N_3^{iii} -Ni ₁ -O ₂	Cu ₁ -O ₃	O_{3A} - Cu_1 - N_1 94.31(14)
$Ni_1 - N_3^{iii}$	2.056(4)	89.10(15)	1.969(3)	O _{4A} -Cu ₁ -N ₁ 98.50(14)
Ni ₁ -N ₁	2.059 (4)	N ₁ -Ni ₁ -O ₂ 163.82(14)	Cu ₁ -O ₄ 1.970(3)	O ₃ -Cu ₁ -Cu ₁ ^{iv} 82.27(10)
Ni_1-O_{1W}	2.098(4)	O_{1W} -Ni ₁ -O ₂	Cu_1-O_{3A}	O ₄ -Cu ₁ -Cu ₁ ^{iv} 84.75(10)
Ni ₁ -O ₂	2.117(3)	87.06(14)	1.972(3)	O _{3A} -Cu ₁ -Cu ₁ ^{iv} 80.77(10)
Ni ₁ -O ₁	2.148(3)	O_3^{ii} -Ni ₁ -O ₁ 155.47(13)	$Cu_1 - O_{4A}$ 1.977(3)	O_{4A} - Cu_1 - Cu_1^{iv} 86.41(10)
Ni ₁ -C ₂₄	2.476(5)	Na ⁱⁱⁱ -Nia-Oa	Cu ₁ -N ₁	N ₁ -Cu ₁ -Cu ₁ ^{iv} 175.00(11)
O ₃ ⁱⁱ -Ni ₁ -N ₃ ⁱⁱⁱ	88.03(14)	91.36(14)	2.158(4)	O ₁ -Cu ₂ -O _{2A} 88.90(14)
O_3^{ii} -Ni ₁ -N ₁	102.63(15)	$N_1 - Ni_1 - O_1$	$Cu_1 - Cu_1^{iv}$	O ₁ -Cu ₂ -O ₂ 166.75(13)
N_3^{iii} -Ni ₁ -N ₁	93.07(16)	101.89(14)	2.0955(11)	O _{2A} -Cu ₂ -O ₂ 88.22(14)
O_3^{ii} -Ni ₁ -O _{1W}	91.24(14)	O_{1W} -N1 ₁ - O_1 87.69(13)	$Cu_2 - O_1$ 1.960(3)	O ₁ -Cu ₂ -O _{1A} 89.00(14)
N_3^{iii} -Ni ₁ -O _{1W}	176.04(16)	O_2 -Ni ₁ - O_1	Cu_2-O_{2A} 1.971(3)	O _{2A} -Cu ₂ -O _{1A} 167.26(14)
N_1 - Ni_1 - O_{1W}	90.88(16)	62.00(12)	Cu_2-O_2 1.972(3)	O_2 - Cu_2 - O_{1A} 90.97(14)
O ₃ ⁱⁱ -Ni ₁ -O ₂	93.47(13)	O_3^{ii} -Ni ₁ -C ₂₄ 124.28(15)	Cu ₂ -O _{1A}	O ₁ -Cu ₂ -N ₃ 97.23(14)
		Na ⁱⁱⁱ -Nia-Car	1.981(3)	O _{2A} -Cu ₂ -N ₃ 99.88(15)
		89.99(16)	Cu ₂ -N ₃ 2.142(4)	O ₂ -Cu ₂ -N ₃ 96.00(14)
		$N_1 - Ni_1 - C_{24}$ 133.07(16)	$Cu_2-Cu_2^v$ 2.6824(11)	O _{1A} -Cu ₂ -N ₃ 92.85(15)
		O.wNC.	O_3 - Cu_1 - O_4	O_1 - Cu_2 - Cu_2^v 85.76(10)
		87.20(15)	167.00(13)	O_{2A} - Cu_2 - Cu_2^v 89.11(10)
		O_2 -Ni ₁ - C_{24} 30.82(14)	O ₃ -Cu ₁ -O _{3A} 90.62(14)	
		O ₁ -Ni ₁ -C ₂₄ 31.19(14)	O ₄ -Cu ₁ -O _{3A} 88.02(13)	
			O ₃ -Cu ₁ -O _{4A} 87.78(14)	
			O ₄ -Cu ₁ -O _{4A} 90.69(13)	
			O _{3A} -Cu ₁ - O _{4A} 167.18(13)	
			O ₃ -Cu ₁ -N ₁ 98.78(14)	

Compound 5				Compound 6			
Zn ₁ -O ₁ ^{vi}	1.898(3)	O_1^{vi} -Zn ₁ -O ₁		Co ₁ -O ₁	1.919(3)	O_1 - Co_1 - O_1^{vii}	110.8(2)
Zn ₁ -O ₁	1.898(3)	O^{vi}		$Co_1 - O_1 v_1$	ii 1.919(3)	O_1 -Co ₁ -	(12)
$Zn_1-N_1^{vi}$	1.982(3)	N_1^{vi} 109.41(2)	12)	Co ₁ -N ₁ vii 1.984(3)		$N_1 = 107.83(12)$	
Zn ₁ -N ₁	1.982(3)	O_1 -Zn ₁ -N ₁ ^{vi} 108 23(11)		Co ₁ -N ₁	1.984(3)	N_1^{vii} 110.32(13)	
		O_1^{vi} -Zn ₁ -N ₁ 108.23(11)				O ₁ -Co ₁ - N ₁ 110.32	2(13)
		O ₁ -Zn ₁ -N ₁ 109.41(12)				O_1^{vii} -Co ₁ - N ₁ 107.85(12)
		N ₁ ^{vi} -Zn ₁ -N ₁ 110.99(16)				109.69(18)	
Compaund 7			Compound 9				
			NI; NI	2 100(2)		172 97(16)	
$Cd_1 - O_2$	2.282(3)	O_4 - Cd_1 - O_3	78 22(0)		2.100(3)	$\mathbf{O}_1 - \mathbf{N}_1 - \mathbf{O}_1$	176.67(14)
$Cd_1 - N_1$	2.301(3)	N_3 -Cd ₁ -O ₃	78.22(9)	$NI_1 - O_1$	2.1034(15)	$N_1 - N_1 - N_3$	1/0.0/(14)
$Ca_1 - O_4$	2.351(3)	O_2 -Cd ₁ -O ₁	96.04(9)	N1 ₁ -N ₃	2.110(3)	N ₁ -N ₁ -N ₃	90.40(8)
Cd_1-N_3	2.370(3)	N_1 -Cd ₁ -O ₁	82.35(9)	$N_1 - Ni_1 - N_1$ 92.92(16)		O_1 - Ni_1 - N_3	86.19(9)
Cd_1-O_3	2.474(3)	O_4 -Cd ₁ -O ₁	74.97(10)	N1-Ni1-O	93 73(9)	O_1 -Ni ₁ -N ₃	88.60(9)
Cd ₁ -O ₁	2.545(3)	N_3 - Cd_1 - O_1	176.88(9)	N ₁ -Ni ₁ -O	91.18(9)	N ₃ -Ni ₁ -N ₃	86.27(15)
$Cd_1 - C_{25}$	2.744(4)	O_3 - Cd_1 - O_1	104.57(8)	Compound 0			
O_2 -Cd ₁ -N ₁ 126.86(10)		O_2 -Cd ₁ -C ₂₅ 111.31(12)		Compound 9			
OCdu-O4	90 29(10)	N1-Cd1-C25		Cu ₁ -O ₁	1.9730(15)	N ₁ -Cu ₁ -O ₄	162.74(7)
N_1 -Cd $-O_4$,	121.77(11)		Cu ₁ -N ₁	1.9795(17)	O_1 - Cu_1 - O_3	145.57(7)
138.43(10)		O_4 - Cd_1 - C_{25}	26.99(11)	Cu ₁ -O ₄	2.0108(17)	N ₁ -Cu ₁ -O ₃	102.17(7)
O ₂ -Cd ₁ -N ₃	83.00(10)	N_3 -Cd ₁ -C ₂₅	93.21(11)	Cu ₁ -O ₃	2.0287(17)	O ₄ -Cu ₁ -O ₃	64.57(7)
N ₁ -Cd ₁ -N ₃	95.84(10)	O_3 - Cd_1 - C_{25}	27.18(11)	Cu ₁ -N ₃	2.1911(18)	O ₁ -Cu ₁ -N ₃	104.40(7)
O_4 - Cd_1 - N_3 107.96(10)		O_1 - Cd_1 - C_{25}	89.90(11)	O_1 - Cu_1 - N_1 90 47(7)		N_1 - Cu_1 - N_3	97.29(7)
O_2 -Cd ₁ -O ₃				O_1 -Cu ₁ -O ₄ 95.25(7)		O_4 - Cu_1 - N_3	97.03(8)
130.45(10)	100 (2)					O_3 - Cu_1 - N_3	105.53(7)
N_1 -Cd ₁ -O ₃	100.55(9)						

Symmetry operations: (i) -y+1, -x+1, -z+1/6; (ii) x+1/2, y-1/2, z; (iii) -x-1, y, -z+1/2; (iv) -x, -y, -z; (v) -x-1, -y+1, -z+1; (vi) -x+5/4, y, -z+1/4; (vii) -x+1/4, y, -z+1/4.