Electronic Supplementary Information

A Series of Alternating Na/M³⁺ (M = Mn, Fe) Covalent and Ionic Chains

Nelly $Berg^a$ and Leigh F. Jones^{*a}

Fig S1: Crystal packing observed in 1 as viewed along the [011] cell face.

Fig S2: Crystal packing observed in 3 as viewed down the *a* (left) and *b* axis (right) respectively.

Fig. S3 (top) Part of a 1-D row in chain **6**. Hydrogen atoms have been omitted for clarity. (bottom) View of the chains in **6** propagating along the *c* cell direction.

Fig S4: Crystal packing observed in complex 7 as viewed along the *b* axis. The 1-D zig zag rows of $[Mn(biphenH)_2(bipy)_2]$ units propagate along the *a* axis and therefore across the page.

Fig. S5 (top) Crystal structure of 8 showing various intra- and interchain interactions exhibited within the crystal. H atoms have been omitted for clarity.

Fig. S6 UV/vis spectra obtained from MeOH (top), EtOH (middle) and MeCN (bottom) solutions of 2,2'-biphenol. UV/vis (MeOH): λ_{max} [nm] (ϵ_{max} 10³ dm³ mol⁻¹ cm⁻¹): 206 (37.9), 241 (10.8), 292 (8.2), 318(sh). (EtOH): 207 (38.1), 243 (9.8), 284 (8.3). (MeCN): 203 (38.6), 246 (13.6), 277 (21.2), 319 (2.6).

Fig. S7 UV/vis spectra obtained from MeOH (top), EtOH (middle) and MeCN (bottom) solutions of 3-picoline. UV/vis (MeOH): λ_{max} [nm] (ε_{max} 10³ dm³ mol⁻¹ cm⁻¹): 204 (4.5), 256 (2.7), 262 (3.1), 268 (2.25). (EtOH): 204 (4.95), 250 (1.99), 257 (2.75), 262 (3.06), 269 (2.16). (MeCN): 202 (5.0), 257 (2.37), 262 (2.46), 268 (1.87).

Fig. S8 UV/vis spectra obtained from MeOH (top), EtOH (middle) and MeCN (bottom) solutions of 4-cyanopyridine. UV/vis (MeOH): λ_{max} [nm] (ϵ_{max} 10³ dm³ mol⁻¹ cm⁻¹): 211 (9.18), 219 (7.69), 271 (5.16). (EtOH): 211 (8.16), 219 (6.7), 271 (3.44). (MeCN): 210 (9.10), 219 (7.43), 270 (3.21).

Fig. S9 UV/vis spectra obtained from MeOH (top), EtOH (middle) and MeCN (bottom) solutions of the 1-D chain in 2.

Fig. S10 UV/vis spectra obtained from MeOH (top), EtOH (middle) and MeCN (bottom) solutions of the chain in 4.

Fig. S11 UV/vis spectra obtained from MeOH (top), EtOH (middle) and MeCN (bottom) solutions of the Fe / Na chain in 5.

Fig. S12 Microscope images of crystalline products of the covalent Mn / Na chain 1 (top), the ionic Mn / Na chain 4 (middle) and the Fe / Na covalent chain 3 (bottom).

Fig. S13: Bonding modes observed in this work. Colour code: Yellow (Na), Pink (Mn), Red (O), Grey (C), Black (H).

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2011

	-	4	3	4
Formula ^a	$C_{67}H_{59}N_{3}O_{10}Mn_{2}Na_{2} \\$	$C_{54}H_{58}N_2O_9MnNa$	$C_{54}H_{58}N_2O_9FeNa$	$C_{52}H_{46}N_4O_9MnNa$
$M_{ m W}$	1222.03	956.95	957.86	946.86
Crystal System	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	P-1	P-1	P-1	$P2_1/n$
a/Å	11.814(2)	10.350(2)	10.342(2)	10.377(2)
b/Å	12.513(3)	11.989(2)	12.133(2)	21.331(4)
$c/\text{\AA}$	22.786(5)	21.671(4)	21.457(4)	23.121(5)
$\alpha/^{o}$	96.06(3)	86.90(3)	86.03(3)	90.00
<i>β</i> /°	98.11(3)	78.51(3)	78.40(3)	99.53(3)
$\gamma/^{\circ}$	115.49(3)	69.14(3)	68.86(3)	90.00
$V/\text{\AA}^3$	2957.6(10)	2462.1(9)	2459.9(9)	5047.4(18)
Ζ	2	2	2	4
<i>T</i> /K	150(2)	150(2)	150(2)	150(2)
$\lambda^{\mathrm{b}}/\mathrm{\AA}$	0.7107	0.7107	0.7107	0.7107
$D_{\rm c}/{ m g~cm^{-3}}$	1.372	1.291	1.293	1.249
s./indep.(R_{int}) refl.	10822 / 6185 (0.0477)	9016 / 6299 (0.0491)	9008 / 3555 (0.1151)	9233 / 5854 (0.0424)
wR2 (all data)	0.1411	0.1634	0.1951	0.2652
$R1^{d,e}$	0.0599	0.0610	0.0863	0.0725

Table S1 Crystallographic data for complexes 1-4

^{*a*} Includes guest molecules.^{*b*} Mo-K α radiation, graphite monochromator. ^{*c*} wR2= $[\Sigma w(IF_o^2I - IF_c^2I)^2 / \Sigma wIF_o^2I^2]^{1/2}$. ^{*d*} For observed data. ^{*e*} R1= $\Sigma IIF_oI - IF_cII / \Sigma IF_oI$.

	5	6	7	8
Formula ^a	$C_{66}H_{58}N_4O_{11}Mn_2Na_2\\$	$C_{75}H_{77}N_{3}O_{11}Mn_{2}Na_{2}$	$C_{44}H_{34}N_4O_4Mn$	$C_{38}H_{36}N_2O_6FeNa$
$M_{ m W}$	1239.02	1352.26	737.69	695.53
Crystal System	Triclinic	Monoclinic	Tetragonal	Orthorhombic
Space group	P-1	$P2_1/c$	$I4_1/a$	Pbca
a/Å	11.293(2)	21.3738(6)	16.357(2)	20.326(4)
b/Å	15.606(3)	12.8753(4)	16.357(2)	12.942(3)
$c/\text{\AA}$	17.596(4)	24.8333(8)	26.747(5)	24.997(5)
$\alpha/^{o}$	84.81(3)	90	90	90
$\beta^{\prime \circ}$	77.73(3)	104.246(3)	90	90
$\gamma/^{\circ}$	81.07(3)	90	90	90
V/Å ³	2988.3(10)	6623.8(3)	7156(2)	6576(2)
Ζ	2	4	8	8
T/K	150(2)	150(2)	150(2)	150(2)
$\lambda^{\mathrm{b}}/\mathrm{\AA}$	0.7107	1.5418*	0.7107	0.7107
$D_{\rm c}/{\rm g~cm^{-3}}$	1.377	1.356	1.369	1.405
1eas./indep. (R_{int}) refl.	10920 / 5906 (0.0779)	62976 / 13175 (0.0684)	3076 / 1770 (0.0785)	6010 / 2535 (0.0832)
wR2 (all data)	0.1698	0.0906	0.1119	0.0358
$R1^{d,e}$	0.0814	0.0391	0.0497	0.0389
boodness of fit on F^2	1.036	0.895	0.868	0.661

Table S2 Crystallographic data for complexes 5-8

^{*a*} Includes guest molecules.^{*b*} Mo-K α radiation, graphite monochromator. ^{*c*} $wR2 = [\Sigma w(IF_0^2I - IF_c^2I)^2 / \Sigma wIF_0^2I^2]^{1/2}$. ^{*d*}For observed data. ^{*e*} $R1 = \Sigma IIF_0I - IF_cII / \Sigma IF_0I$. *Measured using a SuperNova (Cu) X-ray source.

(1)	
Mn2 […] Na2	3.307
Mn2 […] Na1	3.339
Mn1 Na1	3.153
Mn3 […] Na2	3.142
(2)	
Mn1 Na1	5.251
(3)	
Fe1 Na1	5.242
(4)	
Mn1 Na1	5.257
(5)	
Mn1…Na1	3.183
Mn3 […] Na2	3.074
Mn2 […] Na2	3.295
Mn2 […] Na1	3.231
(6)	
Mn1 Na1	3.310
Mn1 Na2	3.293
Mn2 […] Na1	3.273
Mn2 […] Na2	3.327
(8)	
Fe1 Na1	3.439

Table S3 Intra-chain metal...metal distances in the 1-D chains 1-6 and 8

Table S4 BVS calculations on the Mn ions described in this work.

Chain		Atom label and BVS result
(1)	Calculated as:	Mn1
	Mn ²⁺	3.39
	Mn ³⁺	3.13
	Mn ⁴⁺	3.09
	Calculated as:	Mn3
	Mn ²⁺	3.38
	Mn ³⁺	3.11
	Mn ⁴⁺	3.05

		N. 1
(2)	Calculated as:	<u>Mn1</u>
		5.25
	Mn ³	2.98
	Mn^{4+}	2.92
(4)	Calculated as:	Mn1
\$ <i>t</i>	Mn ²⁺	3.30
	Mn ³⁺	3.04
	Mn ⁴⁺	2.98
(5)	Calculated as:	Mn1
	Mn ²⁺	3.24
	Mn ³⁺	2.99
	Mn^{4+}	2.93
	Calculated as:	Mn3
	Mn^{2+}	3.48
	Mn ³⁺	3.20
	Mn^{4+}	3.14
(7)	Calculated as:	Mn1
	Mn ²⁺	1.88
	Mn ³⁺	1.74
	4+	
	Mn ⁺	1 70

X-ray diffraction details on the collection of 1-8

The structures of **1-5** and **7** and **8** were collected on an Xcalibur S single crystal diffractometer (Oxford Diffraction) using an enhanced Mo source. Each data reduction was carried out on the CrysAlisPro software package. The structures were solved by direct methods $(SHELXS-97)^1$ and refined by full matrix least squares using SHELXL-97.² SHELX operations were automated using the OSCAIL software package.³ All hydrogen atoms within the covalent chains **1** and **5** were assigned to idealised positions. The majority of the hydrogen atoms in the ionic chains of **2** and **4** were also assigned to ideal positions however the H-bonding hydrogen atoms (H5A-H8A in **2** and H5A-H8A in **4**) were located in the difference map and restrained to no less than 0.85(1) Å from their corresponding O atoms (O5-O8 in **1**, O5-O9 in **2**) using the DFIX parameter. The bridging

EtOH labelled O5-C35-C36 in **1** was successfully modelled as disordered over two sites (60:40) using the PART function. The H atoms (H5A and H10) of the two bridging EtOH ligands were assigned to idealised positions. The proton (H11A) of the one EtOH ligand that bridges Na2 and Mn3 in **5** was assigned to an idealised position using a riding model in an identical fashion to the bridging EtOHs in **1** described above. The structure of **6** was collected with Cu radiation ($l = 1.5418 \text{ A}^\circ$) on an Oxford Diffraction SuperNova Dual wavelength diffractometer with an Atlas CCD detector. All hydrogen atoms within this covalent chain were assigned to idealised positions.

1. G. M. Sheldrick, Acta. Crystallogr., Sect. A: Found. Crystallogr., 1990, A46, 467.

2. G. M. Sheldrick, SHELXL-97, A computer programme for crystal structure determination, University of Gottingen, 1997.

3. P. McArdle, P. Daly and D. Cunningham, J. Appl. Crystallogr., 2002, 35, 378.