Powder X-ray diffraction data for all compounds were collected on a Philips powder diffractometer using CuK_{α}-radiation, graphite monochromator on diffracted beam and operating at $40 \mathrm{kV}, 30 \mathrm{~mA}$ at 293 K .

Differential Scanning Calorimetry scans were done on a Mettler Toledo 422^{e} on $\mathbf{2}$ and a Thermal Analysis DSC-Q10 for $\mathbf{1}$ and 3.

1) 2-methylolphenol (1)

Figure S1: DSC trace for 2-methylolphenol.

2-methylolphenol (1) from commercial product

Figure S2: Comparison of powder pattern obtained from commercial product and that calculated from the single crystal structure.

2-methylolphenol (1) from methanol

Figure S3: Comparison of powder pattern of crystals grown from methanol and that calculated from the single crystal structure for (1).

2-methylolphenol (1) from ethanol

Figure S4: Comparison of powder pattern of crystals grown from ethanol and that calculated from the single crystal structure for (1).

2-methylolphenol (1) from tetrahydrofuran

Figure S5: Comparison of powder pattern of crystals grown from tetrahydrofuran and that calculated from the single crystal structure for (1).

Figure S6: Comparison of powder pattern of crystals grown from acetone and that calculated from the single crystal structure for (1).

2) 3-methylolphenol (2)

Lab: Ana
Figure S7: DSC trace of commercial product.

Lab: Ana
STAR ${ }^{\text {e }}$ SW 9.01
Figure S8: DSC trace for $Z^{\prime}=2(\mathbf{2 a})$.

Figure S9: DSC trace for $Z^{\prime}=3(\mathbf{2 b})$.
The major differences between the two polymorphs is in the peaks at $2 \theta=6.5^{\circ}, 18.5^{\circ}$, 19.5°, which are absent in the $Z^{\prime}=2$ polymorph, as shown below:

Figure S10: Comparison of powder pattern obtained from bulk material grown from methanol and that calculated from the single crystal structure for $Z^{\prime}=2(\mathbf{2 a})$.

Figure S11: Comparison of powder pattern obtained from bulk material grown from methanol and that calculated from the single crystal structure for $Z^{\prime}=3$ (2b).

Figure S12: Comparison of powder pattern obtained from commercial product and that calculated from the single crystal structure of $\mathbf{2 b}$. Confirms that $Z^{\prime}=3$ is the commercially available polymorph.

The $Z^{\prime}=3$ polymorph was obtained from other slow evaporation crystallizations, using the solvents ethyl acetate, ethanol, acetone and tetrahydrofuran, shown below:

3-methylolphenol (2b) $Z^{\prime}=3$ from ethyl acetate

Figure S13: Comparison of powder pattern of crystals grown from ethyl acetate and that calculated from the single crystal structure for $Z^{\prime}=3(\mathbf{2 b})$.

2-methylolphenol $Z^{\prime}=3$ from ethanol

Figure S14: Comparison of powder pattern of crystals grown from ethanol and that calculated from the single crystal structure for $Z^{\prime}=3(\mathbf{2 b})$.

2-methylolphenol (2b) Z' = 3 from acetone

Figure S15: Comparison of powder pattern of crystals grown from acetone and that calculated from the single crystal structure for $Z^{\prime}=3(\mathbf{2 b})$.

3-methylolphenol (2b) Z' = 3 from tetrahydrofuran

Figure S16: Comparison of powder pattern of crystals grown from tetrahydrofuran and that calculated from the single crystal structure for $Z^{\prime}=3(\mathbf{2 b})$.

3) 4-methylolphenol (3)

Sample: $1-\mathrm{OH} 4-\mathrm{OH} 3$	DSC	File: G-...VeerShevalAndreaslL-7-Th8000.004 Size: 2.1000 mg
Method: 25 to $120 @ 10$ Run Date: $2009-06-28$ 11:44		
Comment: melting point of 4-hydroxybenzylalcohol to 200 C		Instrument: DSC Q10 V9.0 Build 275

Figure S17: DSC trace 4-hydroxybenzyl alcohol.

4-methylolphenol (3) from commercial product

Figure S18: Comparison of powder pattern obtained from commercial product and that calculated from the single crystal structure.

4-methylolphenol (3) from methanol

Figure S19: Comparison of powder pattern of crystals grown from methanol and that calculated from the single crystal structure for (3).

4-methylolphenol (3) from isopropanol

Figure S20: Comparison of powder pattern of crystals grown from isopropanol and that calculated from the single crystal structure for (3).

Figure S21: Comparison of powder pattern of crystals grown from acetonitrile and that calculated from the single crystal structure for (3).

4-methylolphenol (3) from tetahydrofuran

Figure S22: Comparison of powder pattern of crystals grown from tetrahydrofuran and that calculated from the single crystal structure for (3).

Figure S23: Comparison of powder pattern of crystals grown from ethyl acetate and that calculated from the single crystal structure for (3).

Figure S24: Comparison of powder pattern of crystals grown from acetone and that calculated from the single crystal structure for (3).

4) Computational results

Figure S25: Potential energy scan for rotation around the O-C-C-C torsion angle in 2, showing the low barrier to rotation ($<9 \mathrm{~kJ} . \mathrm{mol}^{-1}$)

Table S1 Intermolecular interactions involved in $\mathbf{1}-\mathbf{3}$ in $^{\mathrm{kJ}} . \mathrm{mol}^{-1}$ calculated at the M06-2X/6-31+G(d) level of theory, with H -atom positions optimized at the B3LYP/6-31+G(d) level. Molecules involved in each interaction are placed in the same relative positions as found in the crystal structure. Molecules are numbered according to Figure S26. The total stabilization experienced (in $\mathrm{kJ} \mathrm{mol}^{-1}$) by each crystallographically independent molecule is calculated from the individual interactions.

	Interaction*	E (kJ.mol ${ }^{-1}$)	Total stabilization
	1	-34.7	-159.1**
	2	-45.4	
	3	-4.5	
	4	-4.5	
	5	-13.7	
1	6	-12.1	
1	7	-3.5	
	8	-3.5	
	9	-0.3	
	10	-4.2	
	11	-12.1	
	12	-13.7	

25 (C) -4.3
Molecule B with
A (A) -19.8
C
3
(C)
-19.1
(C)
-1.7
5
(B)
-27.8
6
(C)
-19.9
7
(A)
-20.0
10 (B) -27.8
13 (A) -2.9
23
(A)
-6.5
31 (A) -3.2
25
(C)
-4.0
27
(B)
-5.5
29
(A)
-20.5
30
(B)
-20.4
Molecule C with

B	(B)	-19.1
6	(C)	-29.2

8 (C) -29.2
7 (A) -2.4
10 (B) -19.9
13 (C) -31.3
31 (A) -3.9
33
(C)
-1.7
34 (A) -20.2
35 (C) -2.4
36
(B)
-4.0
37
(A)
-4.3
38
(C)
-5.4
39
(C)
-2.1
-15.3
$-187.2^{* *}$
-29.4
-6.8
-17.4
-0.3
-6.9
-11.7
-29.4
-6.8
10
-0.3
11
-5.8
12
-5.8
$13-17.4$
14
-11.7
15
-6.9
16
-15.3

* Letter in parenthesis indicates conformation of second molecule involved in the interaction.
** Sum of all interactions with surrounding molecules.

(1)

(2b)

(3)

Figure S26: Spheres of inclusion around crystallographically independent molecules (A-C, indicated by ball and stick models) for $\mathbf{1 - 3}$ used to determine all intermolecular interactions referred to in Table S1.

