ELECTRONIC SUPPLEMENTARY INFORMATION

SURFACE ASSEMBLY OF PORPHYRIN NANORODS WITH ONE-DIMENSIONAL ZINC-OXYGEN SPINAL CORDS

Marta Trelka,^a Christian Urban,^a Celia Rogero,^{b.c} Paula de Mendoza,^d Eva Mateo-Marti,^b Yang Wang,^e Iñaki Silanes,^{f.g} David Écija,^a Manuel Alcamí,^e Felix Yndurain,^a Andrés Arnau,^{cf.h} Fernando Martín,^{e,i} Antonio M. Echavarren,^d José Ángel Martín-Gago,^{b.j} José María Gallego,^{i,j} Roberto Otero^{o,i}* and Rodolfo Miranda^{o,i}

- ^a Dep. De Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain. E-mail: roberto.otero@uam.es
- ^b Centro de Astrobiología, CSIC-INTA, 28850, Madrid, Spain
- ^c Centro de Fisica de Materiales CSIC-UPV/EHU, Materials Physics Center MPC, San Sebastian, Spain
- ^d Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain
- ^e Dep. de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- ^f Donostia International Physics Center (DIPC), 20018 San Sebastian, Spain.
- ⁹ Instituto de Hidráulica Industrial de Cantabria (IH), 39005 Santander, Spain
- g

^h Depto. Fisica de Materiales UPV/EHU, Facultad de Quimica, San Sebastian, Spain

¹ Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-NANO), Campus de Cantoblanco 28049 Madrid, Spain. ¹ Instituto de Ciencia de Materiales de Madrid –CSIC, Cantoblanco 28049 Madrid, Spain.

Synthesis of Zn-TMP

meso-Tetramesitylporphyrin (TMP).^{Error! Bookmark not defined. *General Lyndsey method for the synthesis of ortho-substituted tetraphenylporphyrins:* In a 1 L two-neck round-bottom flask with a septum and a reflux condenser, mesitylbenzaldehyde (0.74 mL, 5 mmol) and pyrrol (0.347 mL, 5 mmol) were added in dry CHCl₃ (300 mL). After the solution was purged with N₂ 5 min. 2.5 M BF₃·OEt₂ (0.66 mL, 1.65 mmol) was added drop wise via syringe. After one hour, DDQ (0.922 g, 3.7 mmol) was added and the reaction was warmed at 61 °C for an additional hour. The reaction mixture was cooled to room temperature and 1 equivalent of Et₃N (0.23 mL, 1.6 mmol) was added and solvent was evaporated. The crude dry mixture was filtered through a column of SiO₂ (20 to 90 % CH₂Cl₂/hexane) and the purple solid was washed several times with methanol to give *meso*-tetramesitylporphyrin (245 mg, 25 %) as a purple solid. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 8H), 7.27 (s, 8H), 2.62 (s, 12H), 1.84 (s, 24H), -2.51 (s, 2H). MALDI positive observed 782.4 [M]⁺ and [M+H]⁺. IR (neat): n = 3317, 2916, 2848, 1469, 1375, 1345, 1212, 1189, 968, 945, 851, 825, 800, 733 cm⁻¹.}

Zinc *meso*-tetramesitylporphyrin (ZnTMP). In a round-bottom flask TMP (50 mg, 0.0639 mmol) and $Zn(OAc)_2$ (117 mg, 0.639 mmol) were added in a 3:1 CH₂Cl₂/MeOH (45/15 mL) solvent mixture and stirred at room temperature for 4 hours. Solvents were evaporated and the residue was chromatographed in neutral alumina (40 to 80 % CHCl₃/hexane) to give zinc-*meso*-tetramesitylporphyrin (42 mg, 78 %) as a pink solid.

¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 8H), 7.26 (s, 8H), 2.62 (s, 12H), 1.84 (s, 24H). MALDI positive observed: [M]⁺, [M+H]⁺ and 2[M]⁺, 2[M+H]⁺. HRMS-CI m/z calcd for C₅₆H₅₂N₄Zn [M]⁺ 844.3476, found 844.3483. IR (neat): n = 2914, 2851, 1611, 1570, 1524, 1436, 1375, 1335, 1296, 1204, 1060, 998, 906, 852, 799, 723 cm⁻¹. UV (CHCl₃): I_{max} = 421 (Soret), 550 nm.

Theoretical Calculations

Calculations on finite porphyrin-ligand-porphyrin systems for different ligands

Calculated binding energies for a number of possible ligands bridging a porphyrin dimer.

MOLa	Е _{тот} ь	DEc	DE	d_ZnZne
			(BSSE)	

			d		
porphyrin-monomer	-2435.4451833				
H ₂ O	-76.3209268				
P-H ₂ O	-2511.7876538	-22.9	-13.5		
P-H ₂ O-P	-4947.2331757	-47.7	-13.7	4.45272	
02	-150.1712813				
P-O ₂	-2585.6163987	-5.1	0.0		
CO ₂	-188.3927244				
P-CO ₂ -P	-5059.3054103	-25.0	-14.0	6.70112	
СО	-113.1826101				
Р-СО-Р	-4984.0814631	-24.1	-5.3	6.0587	
FA	-189.5525717				
P-FA-P	-5060.4604344	-36.4	-11.0	5.60439	

Notations 'P' for porphyrin, 'FA' for formic acid.

b Total DFT energy (a.u.).

 $\ensuremath{{\ensuremath{\mathsf{c}}}}$ Binding energy (kcal/mol) without BSSE correction.

- d Binding energy (kcal/mol) including BSSE correction.
- e Zn...Zn distance (Å).

а

The relaxed geometry for each ligand is shown below

P-CO-P

Calculations on periodic porphyrin-ligand-porphyrin systems for different ligands

Figure 1: E vs. d_0 for ZnPor. Distance in Å, energy in eV.

Geometry

Optimal geometry (d_0 = 4.17 Å)

Geometry for $d_0=6.50~{\rm \AA}$

Molecular oxygen

Geometry

Optimal geometry (d₀ = 5.88 Å)

Geometry for $d_0 = 6.50$ Å

Geometry

Geometry for $d_0 = 6.50$ Å

Optimal geometry ($d_0 = 4.82 \text{ Å}$)