# Electronic Supplementary Material (ESI) for CrystEngComm # This journal is © The Royal Society of Chemistry 2011 data_global _journal_name_full CrystEngComm _journal_coden_cambridge 1350 _journal_year ? _journal_volume ? _journal_page_first ? _publ_author_address ;Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan Poland ; loop_ _publ_author_footnote ; Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan Poland ; _publ_contact_author_address ;Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan Poland ; _publ_contact_author_email katran@amu.edu.pl _publ_contact_author_fax +48(61)8291505 _publ_contact_author_phone +48(61)8291443 _publ_contact_author_name 'Andrzej Katrusiak' _publ_section_title ; ? ; loop_ _publ_author_name 'Weizhao Cai' A.Katrusiak data_(+-)-trans-1,2-Diaminocyclohexane_0.36GPa #TrackingRef '- CIF of DACH.cif' _database_code_depnum_ccdc_archive 'CCDC 821655' _audit_creation_method SHELXL-97 _chemical_name_systematic ; (+-)-trans-1,2-Diaminocyclohexane ; _chemical_name_common (+-)-trans-1,2-Diaminocyclohexane _chemical_melting_point ? _chemical_formula_moiety 'C6 H14 N2' _chemical_formula_sum 'C6 H14 N2' _chemical_formula_weight 114.19 _chemical_absolute_configuration unk loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P 21 21 2' _symmetry_space_group_name_Hall 'P 2 2ab ' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' 'x+1/2, -y+1/2, -z' '-x+1/2, y+1/2, -z' _cell_length_a 8.5210(17) _cell_length_b 5.2696(11) _cell_length_c 7.7240(15) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 346.83(12) _cell_formula_units_Z 2 _cell_measurement_temperature 296(2) _cell_measurement_pressure 360000 _cell_measurement_reflns_used 1311 _cell_measurement_theta_min 3.56 _cell_measurement_theta_max 27.32 _exptl_crystal_description plate-shaped _exptl_crystal_colour colourless _exptl_crystal_size_max 0.40 _exptl_crystal_size_mid 0.32 _exptl_crystal_size_min 0.28 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.093 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 128 _exptl_absorpt_coefficient_mu 0.067 _exptl_absorpt_correction_type analytical _exptl_absorpt_correction_T_min 0.49 _exptl_absorpt_correction_T_max 0.93 _exptl_absorpt_process_details ; Katrusiak, A. (2003). REDSHABS - Program for correcting reflections intensities for DAC absorption, gasket shadowing and sample crystal absorption. Adam Mickiewicz University, Pozna\'n. Katrusiak, A. (2004). Z. Kristallogr. 219, 461-467 ; _exptl_special_details ; Data were collected at room temperature and pressure of 0.36(5) GPa (360000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 296(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Kuma KM4CCD \k geometry' _diffrn_measurement_method ;HP omega scans - for more details see: A. Budzianowski, A. Katrusiak in High-Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157-168 ; _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 1311 _diffrn_reflns_av_R_equivalents 0.1472 _diffrn_reflns_av_sigmaI/netI 0.0600 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -5 _diffrn_reflns_limit_l_max 5 _diffrn_reflns_theta_min 3.56 _diffrn_reflns_theta_max 27.32 _reflns_number_total 201 _reflns_number_gt 162 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlis (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlis (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlis (Oxford Diffraction, 2004)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'Mercury (Macrae et al., 2008)' _computing_publication_material 'SHELXL-97 (Sheldrick, 2008)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0692P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 9(10) _refine_ls_number_reflns 201 _refine_ls_number_parameters 40 _refine_ls_number_restraints 8 _refine_ls_R_factor_all 0.0715 _refine_ls_R_factor_gt 0.0535 _refine_ls_wR_factor_ref 0.1278 _refine_ls_wR_factor_gt 0.1201 _refine_ls_goodness_of_fit_ref 1.155 _refine_ls_restrained_S_all 1.205 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group N1 N 0.6282(10) 0.1714(14) 1.0069(13) 0.054(3) Uani 1 1 d G . . H1 H 0.5931 0.1484 1.1101 0.064 Uiso 1 1 d GD . . H2 H 0.7027 0.2783 0.9888 0.064 Uiso 1 1 d GD . . C1 C 0.5381(13) 0.1343(9) 0.8436(17) 0.044(4) Uani 1 1 d D . . H3 H 0.4539 0.2609 0.8399 0.053 Uiso 1 1 calc R . . C2 C 0.6335(12) 0.1642(11) 0.6901(18) 0.041(3) Uani 1 1 d U . . H4 H 0.7175 0.0400 0.6935 0.049 Uiso 1 1 calc R . . H5 H 0.6813 0.3312 0.6924 0.049 Uiso 1 1 calc R . . C3 C 0.5399(10) 0.1323(11) 0.5119(16) 0.047(4) Uani 1 1 d . . . H6 H 0.4614 0.2645 0.5010 0.057 Uiso 1 1 calc R . . H7 H 0.6117 0.1459 0.4149 0.057 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 N1 0.055(6) 0.081(5) 0.025(12) 0.004(5) -0.016(3) -0.011(5) C1 0.047(8) 0.044(3) 0.041(19) -0.006(6) -0.004(4) 0.019(4) C2 0.047(5) 0.048(3) 0.028(10) -0.019(5) 0.012(4) -0.008(4) C3 0.065(10) 0.053(3) 0.024(18) -0.001(6) -0.002(3) -0.002(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag N1 C1 1.490(16) . ? N1 H1 0.8600 . ? N1 H2 0.8600 . ? C1 C2 1.446(19) . ? C1 C1 1.558(14) 2_655 ? C1 H3 0.9800 . ? C2 C3 1.600(18) . ? C2 H4 0.9700 . ? C2 H5 0.9700 . ? C3 C3 1.551(12) 2_655 ? C3 H6 0.9700 . ? C3 H7 0.9700 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 N1 H1 125.9 . . ? C1 N1 H2 109.2 . . ? H1 N1 H2 120.0 . . ? C2 C1 N1 112.9(14) . . ? C2 C1 C1 109.5(4) . 2_655 ? N1 C1 C1 109.5(5) . 2_655 ? C2 C1 H3 108.3 . . ? N1 C1 H3 108.3 . . ? C1 C1 H3 108.3 2_655 . ? C1 C2 C3 114.4(13) . . ? C1 C2 H4 108.6 . . ? C3 C2 H4 108.6 . . ? C1 C2 H5 108.6 . . ? C3 C2 H5 108.6 . . ? H4 C2 H5 107.6 . . ? C3 C3 C2 108.2(5) 2_655 . ? C3 C3 H6 110.1 2_655 . ? C2 C3 H6 110.1 . . ? C3 C3 H7 110.1 2_655 . ? C2 C3 H7 110.1 . . ? H6 C3 H7 108.4 . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N1 C1 C2 C3 -178.6(6) . . . . ? C1 C1 C2 C3 59.1(11) 2_655 . . . ? C1 C2 C3 C3 -56.8(10) . . . 2_655 ? _diffrn_measured_fraction_theta_max 0.247 _diffrn_reflns_theta_full 27.32 _diffrn_measured_fraction_theta_full 0.247 _refine_diff_density_max 0.101 _refine_diff_density_min -0.075 _refine_diff_density_rms 0.024 ############################################################################# data_(+-)-trans-1,2-Diaminocyclohexane_0.52GPa #TrackingRef '- CIF of DACH.cif' _database_code_depnum_ccdc_archive 'CCDC 821656' _audit_creation_method SHELXL-97 _chemical_name_systematic ; (+-)-trans-1,2-Diaminocyclohexane ; _chemical_name_common (+-)-trans-1,2-Diaminocyclohexane _chemical_melting_point ? _chemical_formula_moiety 'C6 H14 N2' _chemical_formula_sum 'C6 H14 N2' _chemical_formula_weight 114.19 _chemical_absolute_configuration unk loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P 21 21 2' _symmetry_space_group_name_Hall 'P 2 2ab ' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' 'x+1/2, -y+1/2, -z' '-x+1/2, y+1/2, -z' _cell_length_a 8.40(6) _cell_length_b 5.159(5) _cell_length_c 7.61(3) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 330(3) _cell_formula_units_Z 2 _cell_measurement_temperature 296(2) _cell_measurement_pressure 520000 _cell_measurement_reflns_used 1837 _cell_measurement_theta_min 4.77 _cell_measurement_theta_max 28.80 _exptl_crystal_description plate-shaped _exptl_crystal_colour colourless _exptl_crystal_size_max 0.36 _exptl_crystal_size_mid 0.28 _exptl_crystal_size_min 0.12 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.150 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 128 _exptl_absorpt_coefficient_mu 0.071 _exptl_absorpt_correction_type analytical _exptl_absorpt_correction_T_min 0.80 _exptl_absorpt_correction_T_max 0.99 _exptl_absorpt_process_details ; Katrusiak, A. (2003). REDSHABS - Program for correcting reflections intensities for DAC absorption, gasket shadowing and sample crystal absorption. Adam Mickiewicz University, Pozna\'n. Katrusiak, A. (2004). Z. Kristallogr. 219, 461-467 ; _exptl_special_details ; Data were collected at room temperature and pressure of 0.52(5) GPa (520000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 296(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Kuma KM4CCD \k geometry' _diffrn_measurement_method ;HP omega scans - for more details see: A. Budzianowski, A. Katrusiak in High-Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157-168 ; _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 1837 _diffrn_reflns_av_R_equivalents 0.3243 _diffrn_reflns_av_sigmaI/netI 0.3488 _diffrn_reflns_limit_h_min -6 _diffrn_reflns_limit_h_max 7 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 4.77 _diffrn_reflns_theta_max 28.80 _reflns_number_total 300 _reflns_number_gt 82 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlis (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlis (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlis (Oxford Diffraction, 2004)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'Mercury (Macrae et al., 2008)' _computing_publication_material 'SHELXL-97 (Sheldrick, 2008)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1515P)^2^+0.3990P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 10(10) _refine_ls_number_reflns 300 _refine_ls_number_parameters 30 _refine_ls_number_restraints 2 _refine_ls_R_factor_all 0.4255 _refine_ls_R_factor_gt 0.1889 _refine_ls_wR_factor_ref 0.4550 _refine_ls_wR_factor_gt 0.3133 _refine_ls_goodness_of_fit_ref 1.144 _refine_ls_restrained_S_all 1.140 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group N1 N 0.629(3) 0.187(3) 1.0044(16) 0.078(7) Uiso 1 1 d G . . H1 H 0.5720 0.1311 1.0877 0.093 Uiso 1 1 d GD . . H2 H 0.7020 0.2952 1.0223 0.093 Uiso 1 1 d GD . . C1 C 0.540(4) 0.140(4) 0.853(2) 0.074(7) Uiso 1 1 d D . . H3 H 0.4530 0.2673 0.8511 0.088 Uiso 1 1 calc R . . C2 C 0.630(4) 0.166(4) 0.683(2) 0.066(11) Uani 1 1 d . . . H4 H 0.7141 0.0381 0.6820 0.079 Uiso 1 1 calc R . . H5 H 0.6798 0.3358 0.6811 0.079 Uiso 1 1 calc R . . C3 C 0.537(3) 0.137(4) 0.519(2) 0.072(10) Uani 1 1 d . . . H6 H 0.4538 0.2672 0.5137 0.087 Uiso 1 1 calc R . . H7 H 0.6058 0.1585 0.4178 0.087 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C2 0.08(4) 0.060(10) 0.060(19) -0.017(14) -0.027(16) -0.013(15) C3 0.04(4) 0.081(12) 0.10(2) 0.010(16) 0.022(14) 0.018(17) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag N1 C1 1.40(3) . ? N1 H1 0.8457 . ? N1 H2 0.8400 . ? C1 C1 1.59(5) 2_655 ? C1 C2 1.51(3) . ? C1 H3 0.9800 . ? C2 C3 1.48(2) . ? C2 H4 0.9700 . ? C2 H5 0.9700 . ? C3 C3 1.54(5) 2_655 ? C3 H6 0.9700 . ? C3 H7 0.9700 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 N1 H1 104.7 . . ? C1 N1 H2 129.9 . . ? H1 N1 H2 121.1 . . ? N1 C1 C1 112.5(15) . 2_655 ? N1 C1 C2 115(2) . . ? C1 C1 C2 107.0(14) 2_655 . ? N1 C1 H3 107.3 . . ? C1 C1 H3 107.3 2_655 . ? C2 C1 H3 107.3 . . ? C3 C2 C1 117(3) . . ? C3 C2 H4 108.1 . . ? C1 C2 H4 108.1 . . ? C3 C2 H5 108.1 . . ? C1 C2 H5 108.1 . . ? H4 C2 H5 107.3 . . ? C2 C3 C3 107.8(14) . 2_655 ? C2 C3 H6 110.1 . . ? C3 C3 H6 110.1 2_655 . ? C2 C3 H7 110.1 . . ? C3 C3 H7 110.1 2_655 . ? H6 C3 H7 108.5 . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N1 C1 C2 C3 -175.8(18) . . . . ? C1 C1 C2 C3 58(3) 2_655 . . . ? C1 C2 C3 C3 -60(3) . . . 2_655 ? _diffrn_measured_fraction_theta_max 0.348 _diffrn_reflns_theta_full 28.80 _diffrn_measured_fraction_theta_full 0.348 _refine_diff_density_max 0.262 _refine_diff_density_min -0.239 _refine_diff_density_rms 0.057 ############################################################################# data_(+-)-trans-1,2-Diaminocyclohexane_0.65GPa #TrackingRef '- CIF of DACH.cif' _database_code_depnum_ccdc_archive 'CCDC 821657' _audit_creation_method SHELXL-97 _chemical_name_systematic ; (+-)-trans-1,2-Diaminocyclohexane ; _chemical_name_common (+-)-trans-1,2-Diaminocyclohexane _chemical_melting_point ? _chemical_formula_moiety 'C6 H14 N2' _chemical_formula_sum 'C6 H14 N2' _chemical_formula_weight 114.19 _chemical_absolute_configuration unk loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P 21 21 2' _symmetry_space_group_name_Hall 'P 2 2ab ' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' '-x+1/2, y+1/2, -z' 'x+1/2, -y+1/2, -z' _cell_length_a 8.345(8) _cell_length_b 5.150(7) _cell_length_c 7.558(10) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 324.8(7) _cell_formula_units_Z 2 _cell_measurement_temperature 296(2) _cell_measurement_pressure 650000 _cell_measurement_reflns_used 1502 _cell_measurement_theta_min 3.64 _cell_measurement_theta_max 28.60 _exptl_crystal_description plate-shaped _exptl_crystal_colour colourless _exptl_crystal_size_max 0.37 _exptl_crystal_size_mid 0.30 _exptl_crystal_size_min 0.14 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.168 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 128 _exptl_absorpt_coefficient_mu 0.072 _exptl_absorpt_correction_type analytical _exptl_absorpt_correction_T_min 0.43 _exptl_absorpt_correction_T_max 0.90 _exptl_absorpt_process_details ; Katrusiak, A. (2003). REDSHABS - Program for correcting reflections intensities for DAC absorption, gasket shadowing and sample crystal absorption. Adam Mickiewicz University, Pozna\'n. Katrusiak, A. (2004). Z. Kristallogr. 219, 461-467 ; _exptl_special_details ; Data were collected at room temperature and pressure of 0.65(5) GPa (650000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 296(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Kuma KM4CCD \k geometry' _diffrn_measurement_method ;HP omega scans - for more details see: A. Budzianowski, A. Katrusiak in High-Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157-168 ; _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 1502 _diffrn_reflns_av_R_equivalents 0.2199 _diffrn_reflns_av_sigmaI/netI 0.1497 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min -4 _diffrn_reflns_limit_k_max 4 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 3.64 _diffrn_reflns_theta_max 28.60 _reflns_number_total 351 _reflns_number_gt 253 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlis (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlis (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlis (Oxford Diffraction, 2004)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'Mercury (Macrae et al., 2008)' _computing_publication_material 'SHELXL-97 (Sheldrick, 2008)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0517P)^2^+0.0252P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 3(10) _refine_ls_number_reflns 351 _refine_ls_number_parameters 35 _refine_ls_number_restraints 2 _refine_ls_R_factor_all 0.1395 _refine_ls_R_factor_gt 0.0939 _refine_ls_wR_factor_ref 0.1724 _refine_ls_wR_factor_gt 0.1492 _refine_ls_goodness_of_fit_ref 1.139 _refine_ls_restrained_S_all 1.167 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group N1 N 0.6309(5) 0.1809(10) 1.0070(6) 0.0464(18) Uani 1 1 d G . . H1 H 0.5826 0.1913 1.1073 0.056 Uiso 1 1 d GD . . H2 H 0.7151 0.2728 0.9874 0.056 Uiso 1 1 d GD . . C1 C 0.5370(5) 0.1323(10) 0.8499(6) 0.0279(12) Uiso 1 1 d D . . H3 H 0.4494 0.2591 0.8482 0.033 Uiso 1 1 calc R . . C2 C 0.6354(5) 0.1737(10) 0.6839(7) 0.0379(17) Uani 1 1 d . . . H4 H 0.7253 0.0544 0.6840 0.045 Uiso 1 1 calc R . . H5 H 0.6778 0.3491 0.6838 0.045 Uiso 1 1 calc R . . C3 C 0.5373(6) 0.1318(12) 0.5178(6) 0.0335(18) Uani 1 1 d . . . H6 H 0.4540 0.2628 0.5107 0.050 Uiso 1 1 calc R . . H7 H 0.6057 0.1501 0.4147 0.050 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 N1 0.046(4) 0.057(6) 0.036(4) 0.004(3) -0.018(2) 0.002(3) C2 0.039(3) 0.020(5) 0.055(4) -0.004(3) 0.017(2) 0.000(3) C3 0.045(3) 0.044(6) 0.012(3) 0.004(2) 0.0039(19) -0.004(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag N1 C1 1.445(7) . ? N1 H1 0.8600 . ? N1 H2 0.8600 . ? C1 C1 1.496(10) 2_655 ? C1 C2 1.515(7) . ? C1 H3 0.9800 . ? C2 C3 1.514(7) . ? C2 H5 0.9700 . ? C2 H4 0.9700 . ? C3 C3 1.494(11) 2_655 ? C3 H6 0.9700 . ? C3 H7 0.9700 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 N1 H1 118.8 . . ? C1 N1 H2 113.4 . . ? H1 N1 H2 120.0 . . ? N1 C1 C1 112.4(3) . 2_655 ? N1 C1 C2 111.3(3) . . ? C1 C1 C2 110.6(3) 2_655 . ? N1 C1 H3 107.4 . . ? C1 C1 H3 107.4 2_655 . ? C2 C1 H3 107.4 . . ? C3 C2 C1 112.0(3) . . ? C3 C2 H5 109.2 . . ? C1 C2 H5 109.2 . . ? C3 C2 H4 109.2 . . ? C1 C2 H4 109.2 . . ? H5 C2 H4 107.9 . . ? C3 C3 C2 110.8(4) 2_655 . ? C3 C3 H6 109.5 2_655 . ? C2 C3 H6 109.5 . . ? C3 C3 H7 109.5 2_655 . ? C2 C3 H7 109.5 . . ? H6 C3 H7 108.1 . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N1 C1 C2 C3 -178.2(4) . . . . ? C1 C1 C2 C3 56.1(5) 2_655 . . . ? C1 C2 C3 C3 -55.9(6) . . . 2_655 ? _diffrn_measured_fraction_theta_max 0.421 _diffrn_reflns_theta_full 28.60 _diffrn_measured_fraction_theta_full 0.421 _refine_diff_density_max 0.159 _refine_diff_density_min -0.163 _refine_diff_density_rms 0.039 ############################################################################# data_(+-)-trans-1,2-Diaminocyclohexane_1.19GPa #TrackingRef '- CIF of DACH.cif' _database_code_depnum_ccdc_archive 'CCDC 821658' _audit_creation_method SHELXL-97 _chemical_name_systematic ; (+-)-trans-1,2-Diaminocyclohexane ; _chemical_name_common (+-)-trans-1,2-Diaminocyclohexane _chemical_melting_point ? _chemical_formula_moiety 'C6 H14 N2' _chemical_formula_sum 'C6 H14 N2' _chemical_formula_weight 114.19 _chemical_absolute_configuration unk loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P 21 21 2' _symmetry_space_group_name_Hall 'P 2 2ab ' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' 'x+1/2, -y+1/2, -z' '-x+1/2, y+1/2, -z' _cell_length_a 8.200(13) _cell_length_b 5.13(3) _cell_length_c 7.40(2) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 311(2) _cell_formula_units_Z 2 _cell_measurement_temperature 296(2) _cell_measurement_pressure 1190000 _cell_measurement_reflns_used 1258 _cell_measurement_theta_min 3.71 _cell_measurement_theta_max 28.95 _exptl_crystal_description plate-shaped _exptl_crystal_colour colourless _exptl_crystal_size_max 0.32 _exptl_crystal_size_mid 0.30 _exptl_crystal_size_min 0.28 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.218 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 128 _exptl_absorpt_coefficient_mu 0.075 _exptl_absorpt_correction_type analytical _exptl_absorpt_correction_T_min 0.30 _exptl_absorpt_correction_T_max 0.76 _exptl_absorpt_process_details ; Katrusiak, A. (2003). REDSHABS - Program for correcting reflections intensities for DAC absorption, gasket shadowing and sample crystal absorption. Adam Mickiewicz University, Pozna\'n. Katrusiak, A. (2004). Z. Kristallogr. 219, 461-467 ; _exptl_special_details ; Data were collected at room temperature and pressure of 1.19(5) GPa (1190000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 296(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Kuma KM4CCD \k geometry' _diffrn_measurement_method ;HP omega scans - for more details see: A. Budzianowski, A. Katrusiak in High-Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157-168 ; _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 1258 _diffrn_reflns_av_R_equivalents 0.4098 _diffrn_reflns_av_sigmaI/netI 0.5505 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 11 _diffrn_reflns_limit_k_min -4 _diffrn_reflns_limit_k_max 3 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 3.71 _diffrn_reflns_theta_max 28.95 _reflns_number_total 268 _reflns_number_gt 83 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlis (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlis (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlis (Oxford Diffraction, 2004)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'Mercury (Macrae et al., 2008)' _computing_publication_material 'SHELXL-97 (Sheldrick, 2008)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0136P)^2^+1.0511P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -10(10) _refine_ls_number_reflns 268 _refine_ls_number_parameters 35 _refine_ls_number_restraints 28 _refine_ls_R_factor_all 0.3808 _refine_ls_R_factor_gt 0.1269 _refine_ls_wR_factor_ref 0.2649 _refine_ls_wR_factor_gt 0.1922 _refine_ls_goodness_of_fit_ref 1.014 _refine_ls_restrained_S_all 0.982 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group N1 N 0.6325(14) 0.196(4) 1.007(2) 0.070(5) Uani 1 1 d GU . . H1 H 0.5735 0.1653 1.1008 0.084 Uiso 1 1 d GD . . H2 H 0.6986 0.3262 1.0067 0.084 Uiso 1 1 d GD . . C1 C 0.5331(15) 0.152(4) 0.842(3) 0.037(4) Uiso 1 1 d DU . . H3 H 0.4422 0.2761 0.8354 0.044 Uiso 1 1 calc R . . C2 C 0.6399(14) 0.171(4) 0.679(2) 0.051(6) Uani 1 1 d U . . H4 H 0.7285 0.0466 0.6887 0.061 Uiso 1 1 calc R . . H5 H 0.6866 0.3443 0.6714 0.061 Uiso 1 1 calc R . . C3 C 0.547(2) 0.118(5) 0.520(3) 0.056(8) Uani 1 1 d U . . H6 H 0.4730 0.2631 0.5002 0.067 Uiso 1 1 calc R . . H7 H 0.6212 0.1129 0.4178 0.067 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 N1 0.076(8) 0.081(10) 0.052(7) -0.008(7) -0.015(7) 0.011(8) C2 0.052(8) 0.06(2) 0.039(8) 0.035(10) 0.011(10) 0.008(11) C3 0.082(15) 0.05(3) 0.039(15) 0.020(9) 0.006(9) 0.016(12) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag N1 C1 1.48(3) . ? N1 H1 0.8600 . ? N1 H2 0.8600 . ? C1 C2 1.49(2) . ? C1 C1 1.66(4) 2_655 ? C1 H3 0.9800 . ? C2 C3 1.43(2) . ? C2 H5 0.9700 . ? C2 H4 0.9700 . ? C3 C3 1.44(4) 2_655 ? C3 H7 0.9700 . ? C3 H6 0.9700 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 N1 H1 109.0 . . ? C1 N1 H2 117.4 . . ? H1 N1 H2 120.0 . . ? N1 C1 C2 109.4(10) . . ? N1 C1 C1 108.8(11) . 2_655 ? C2 C1 C1 104.6(15) . 2_655 ? N1 C1 H3 111.3 . . ? C2 C1 H3 111.3 . . ? C1 C1 H3 111.3 2_655 . ? C3 C2 C1 110.0(12) . . ? C3 C2 H5 109.7 . . ? C1 C2 H5 109.7 . . ? C3 C2 H4 109.7 . . ? C1 C2 H4 109.7 . . ? H5 C2 H4 108.2 . . ? C2 C3 C3 116.5(13) . 2_655 ? C2 C3 H7 108.2 . . ? C3 C3 H7 108.2 2_655 . ? C2 C3 H6 108.2 . . ? C3 C3 H6 108.2 2_655 . ? H7 C3 H6 107.3 . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag N1 C1 C2 C3 177.5(17) . . . . ? C1 C1 C2 C3 61.1(16) 2_655 . . . ? C1 C2 C3 C3 -52(3) . . . 2_655 ? _diffrn_measured_fraction_theta_max 0.335 _diffrn_reflns_theta_full 28.95 _diffrn_measured_fraction_theta_full 0.335 _refine_diff_density_max 0.196 _refine_diff_density_min -0.190 _refine_diff_density_rms 0.050 ############################################################################# data_(+-)-trans-1,2-Diaminocyclohexane_2.04GPa #TrackingRef '- CIF of DACH.cif' _database_code_depnum_ccdc_archive 'CCDC 821659' _audit_creation_method SHELXL-97 _chemical_name_systematic ; (+-)-trans-1,2-Diaminocyclohexane ; _chemical_name_common (+-)-trans-1,2-Diaminocyclohexane _chemical_melting_point ? _chemical_formula_moiety 'C6 H14 N2' _chemical_formula_sum 'C6 H14 N2' _chemical_formula_weight 114.19 _chemical_absolute_configuration unk loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P 21 21 2' _symmetry_space_group_name_Hall 'P 2 2ab ' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' 'x+1/2, -y+1/2, -z' '-x+1/2, y+1/2, -z' _cell_length_a 8.08(3) _cell_length_b 4.914(16) _cell_length_c 7.33(2) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 291.1(16) _cell_formula_units_Z 2 _cell_measurement_temperature 296(2) _cell_measurement_pressure 2040000 _cell_measurement_reflns_used 772 _cell_measurement_theta_min 2.78 _cell_measurement_theta_max 25.43 _exptl_crystal_description plate-shaped _exptl_crystal_colour colourless _exptl_crystal_size_max 0.34 _exptl_crystal_size_mid 0.20 _exptl_crystal_size_min 0.12 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.303 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 128 _exptl_absorpt_coefficient_mu 0.080 _exptl_absorpt_correction_type analytical _exptl_absorpt_correction_T_min 0.68 _exptl_absorpt_correction_T_max 0.94 _exptl_absorpt_process_details ; Katrusiak, A. (2003). REDSHABS - Program for correcting reflections intensities for DAC absorption, gasket shadowing and sample crystal absorption. Adam Mickiewicz University, Pozna\'n. Katrusiak, A. (2004). Z. Kristallogr. 219, 461-467 ; _exptl_special_details ; Data were collected at room temperature and pressure of 2.04(5) GPa (2040000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 296(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Kuma KM4CCD \k geometry' _diffrn_measurement_method ;HP omega scans - for more details see: A. Budzianowski, A. Katrusiak in High-Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157-168 ; _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 772 _diffrn_reflns_av_R_equivalents 0.1491 _diffrn_reflns_av_sigmaI/netI 0.2524 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_h_max 5 _diffrn_reflns_limit_k_min -5 _diffrn_reflns_limit_k_max 5 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 2.78 _diffrn_reflns_theta_max 25.43 _reflns_number_total 181 _reflns_number_gt 129 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlis (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlis (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlis (Oxford Diffraction, 2004)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics 'Mercury (Macrae et al., 2008)' _computing_publication_material 'SHELXL-97 (Sheldrick, 2008)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0849P)^2^+0.1105P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -2(10) _refine_ls_number_reflns 181 _refine_ls_number_parameters 20 _refine_ls_number_restraints 5 _refine_ls_R_factor_all 0.2368 _refine_ls_R_factor_gt 0.1732 _refine_ls_wR_factor_ref 0.2645 _refine_ls_wR_factor_gt 0.2397 _refine_ls_goodness_of_fit_ref 1.198 _refine_ls_restrained_S_all 1.221 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group N1 N 0.635(3) 0.207(3) 1.0161(19) 0.059(5) Uiso 1 1 d GU . . H1 H 0.5687 0.2344 1.1131 0.071 Uiso 1 1 d GD . . H2 H 0.7066 0.3366 0.9811 0.071 Uiso 1 1 d GD . . C1 C 0.531(3) 0.138(2) 0.8498(16) 0.046(6) Uiso 1 1 d DU . . H3 H 0.4366 0.2629 0.8463 0.055 Uiso 1 1 calc R . . C2 C 0.635(2) 0.190(2) 0.6880(15) 0.012(4) Uiso 1 1 d U . . H4 H 0.7299 0.0695 0.6903 0.014 Uiso 1 1 calc R . . H5 H 0.6755 0.3760 0.6921 0.014 Uiso 1 1 calc R . . C3 C 0.538(2) 0.146(2) 0.5090(13) 0.002(3) Uiso 1 1 d U . . H6 H 0.4502 0.2802 0.4989 0.003 Uiso 1 1 calc R . . H7 H 0.6113 0.1675 0.4053 0.003 Uiso 1 1 calc R . . _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag N1 C1 1.52(3) . ? N1 H1 0.9000 . ? N1 H2 0.9000 . ? C1 C1 1.45(3) 2_655 ? C1 C2 1.475(19) . ? C1 H3 0.9800 . ? C2 C3 1.545(16) . ? C2 H4 0.9700 . ? C2 H5 0.9700 . ? C3 C3 1.56(2) 2_655 ? C3 H6 0.9700 . ? C3 H37 0.9700 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 N1 H1 110.0 . . ? C1 N1 H2 106.5 . . ? H1 N1 H2 120.0 . . ? C1 C1 C2 111.1(11) 2_655 . ? C1 C1 N1 113.6(11) 2_655 . ? C2 C1 N1 107.1(17) . . ? C1 C1 H3 108.3 2_655 . ? C2 C1 H3 108.3 . . ? N1 C1 H3 108.3 . . ? C1 C2 C3 111.7(16) . . ? C1 C2 H4 109.3 . . ? C3 C2 H4 109.3 . . ? C1 C2 H5 109.3 . . ? C3 C2 H5 109.3 . . ? H4 C2 H5 107.9 . . ? C2 C3 C3 109.2(8) . 2_655 ? C2 C3 H6 109.8 . . ? C3 C3 H6 109.8 2_655 . ? H6 C3 H6 108.3 . . ? C2 C3 H7 109.8 . . ? C3 C3 H7 109.8 2_655 . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C1 C1 C2 C3 59(3) 2_655 . . . ? N1 C1 C2 C3 -176.1(12) . . . . ? C1 C2 C3 C3 -55(2) . . . 2_655 ? _diffrn_measured_fraction_theta_max 0.319 _diffrn_reflns_theta_full 25.43 _diffrn_measured_fraction_theta_full 0.319 _refine_diff_density_max 0.195 _refine_diff_density_min -0.218 _refine_diff_density_rms 0.055