Supporting information belonging to the manuscript:

Tripodal bis(imidazole)-based ligands and their chelation to

copper(II)

Wei Chen,^a Jinfeng Chu,^a Ilpo Mutikainen,^b Jan Reedijk,^{c,d} Urho Turpeinen,^b Yu-Fei Song^a*

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China.

^b Laboratory of Inorganic Chemistry, Department of Chemistry, P. O. Box 55, University of Helsinki, FIN-00014 Helsinki, Finland.

^c Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands.

^d Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Kingdom of Saudi Arabia

To whom correspondence should be addressed. E-mail: songyufei@hotmail.com;

Tel/Fax: +86-10-64431832

Contents

Figure S1. Representation of the $F^-\pi$ interactions in **1**

Figure S2. (a) crystal packing of compound 1 along 'b' in the unit cell. (b) the arrangement of the layered water clusters in 1.

Figure S3. Hydrogen-bonding interactions between oxalate oxygens and the imidazole –NH, and the axially coordinated water molecules from the neighboring dinuclear $[Cu_2(L2)_2(H_2O)_2]^{4+}$ unit in **2**.

Figure S4. (a) 1D chain arrangement of compound **3**. (b) crystal packing of **3** along 'a'. (c) showing the hydrophilic (H₂O) channels along 'c', respectively.

Figure S5. Variable-temperature magnetic susceptibility measurements of compounds 1 (a), 2 (b) and 3 (c).

Table S1 Selected bond angles (degree) for compounds 1-3

Figure S1. Representation of the $F^-\pi$ interactions in **1**.

Figure S2. (a) crystal packing of compound 1 along 'b' in the unit cell. (b) the arrangement of the layered water clusters in 1.

Figure S3. Hydrogen-bonding interactions between oxalate oxygens and the imidazole –NH, and the axially coordinated water molecules from the neighboring dinuclear $[Cu_2(L2)_2(H_2O)_2]^{4+}$ unit in **2**. (Water molecules and hydrogen atoms are omitted for clarity; hydrogen bonding interactions are indicated with dashed lines).

Figure S4. (a) 1D chain arrangement of compound 3. (water molecules and hydrogen atoms are omitted for clarity; hydrogen-bonding interactions are indicated with dashed lines). (b) crystal packing of 3 along 'a'. (c) showing the hydrophilic (H₂O) channels along 'c', respectively (grey: complex, red: water).

Figure S5. Variable-temperature magnetic susceptibility measurements of compounds 1 (a), 2 (b) and 3 (c).

$1 [Cu_2(L1)_2(H_2O)_2][SiF_6]_2 \cdot 10H_2O$		2 $[Cu_2(L1)(H_2O)_2][Cu(C_2O_4)_2(ClO_4)_2] \cdot 2H_2O$		3 [Cu(ClO ₄)(C ₂ O ₄)(HL2)H ₂ O]·2H ₂ O	
N21 Cu1 N31	94.99(10)	N5 Cu1 N1	163.15(7)	O1 Cu1 O3	84.68(5)
N21 Cu1 N11	162.59(11)	N5 Cu1 N3	96.94(7)	O1 Cu1 N3	94.45(6)
N31 Cu1 N11	100.57(10)	N1 Cu1 N3	98.07(7)	O3 Cu1 N3	174.41(6)
N21 Cu1 N18	81.51(10)	N5 Cu1 N2	82.25(7)	O1 Cu1 N1	174.75(6)
N31 Cu1 N18	171.75(10)	N1 Cu1 N2	82.06(7)	O3 Cu1 N1	91.99(6)
N11 Cu1 N18	82.03(10)	N3 Cu1 N2	174.35(7)	N3 Cu1 N1	89.25(6)
N21 Cu1 O1	98.42(10)	N5 Cu1 O1	90.86(7)	O5 Cu1 N1	90.30(6)
N31 Cu1 O1	97.04(10)	N3 Cu1 O1	94.03(6)	O5 Cu1 N3	89.72(6)
N11 Cu1 O1	87.46(10)	N2 Cu1 O1	91.58(7)	O5 Cu1 O1	86.01(6)
N18 Cu1 O1	90.88(10)	N1 Cu1 O1	95.68(7)	O5 Cu1 O3	95.74(6)
		O4 Cu2 O2	95.09(6)	O6 Cu1 N1	103.53(6)
		O4 Cu2 O4	180.00(6)	O6 Cu1 N3	89.25(6)
		O4 Cu2 O2	84.91(6)	O6 Cu1 O1	80.26(6)
		O2 Cu2 O2	180.00(6)	O6 Cu1 O3	85.14(6)
		O6 Cu2 O2	87.23(6)		
		O6 Cu2 O4	93.12(6)		

Table S1 Selected bond angles (degree) for compounds 1-3