Electronic Supplementary Information (ESI) for CrystEngComm

A novel arenedisulfonate-templated 1D silver ladder constructed from 4-aminobenzonitrile ligand

Di Sun,[‡] Fu-Jing Liu,[‡] Hong-Jun Hao, Yun-Hua Li, Na Zhang, Rong-Bin Huang,* and Lan-Sun Zheng

Department of chemistry, Xiamen University, Xiamen 361005, People's Republic of China and State key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China

[‡]*These authors contributed equally to this work*

Content

(1) Experiment details	2
(2) Synthesis of 1-5	3
(3) X-ray Crystallography	5
(4) Table S1: Crystal data for 1-5	6
(5) Table S2: The selected bond distances and angles for 1-5	7
(6) Figure S1: XRD spectra of 1	8
(7) Figure S2: IR spectra of 1-5	9
(8) Figure S3: The noncovalent interaction between nds and the gird	10
(9) Figure S4: The TG curve of complex 1	11
(10) Figure S5: The photoluminescent properties of complexes 2-5	12

^{*}Correspondence e-mail: rbhuang@xmu.edu.cn. Fax: 86-592-2183074

(1) Experiment details

Materials and General Methods.

All chemicals and solvents used in the syntheses were of analytical grade and used without further purification. IR spectra were measured on a Nicolet Avatar 330 FTIR Spectrometer at the range of 4000-400 cm⁻¹. Elemental analyses were carried out on a CE instruments EA 1110 elemental analyzer. Photoluminescence spectra were measured on a Hitachi F-7000 Fluorescence Spectrophotometer (slit width: 5 nm; sensitivity: high). X-ray powder diffractions were measured on a Panalytical X-Pert pro diffractometer with Cu-K α radiation. TG curves were measured from 30 to 600 °C on a SDT Q600 instrument at a heating rate 10 °C/min under the N₂ atmosphere (100 ml/min).

(2) Synthesis of 1-5

Synthesis of $[nds \subset Ag_2(abn)_4]_n$. (1)

Reaction of Ag₂O (12 mg, 0.05 mmol), H₂nds·4H₂O (36 mg, 0.1 mmol) and abn (12 mg, 0.1 mmol) in methanol-ethanol mixed solvent (5 mL, v/v: 3/2), then aqueous NH₃ solution (25%, 3 mL) was dropped into the mixture to give a clear solution under ultrasonic treatment. The resultant colorless solution was allowed slowly to evaporate at room temperature for two week to give colorless plate crystals of **1**. The crystals were isolated by filtration and washed by ethanol and dried in air. Yield: *Ca.* 57% based on Ag. Elemental analysis: Anal. Calc. for AgC₁₉H₁₅N₄O₃S: C 46.83, H 3.10, N 11.50%. Found: C 44.71, H 3.20, N 10.75%. Selected IR peaks (cm⁻¹): 3477 (s), 3371 (s), 3213 (m), 2214 (m), 1628 (s), 1603 (s), 1515 (m), 1320(w), 1235 (w), 1205 (s), 1176 (m), 1161 (m), 1045 (m), 830 (w), 792 (w), 609 (m), 546 (m).

Synthesis of $[Ag(abn)_2 \cdot NO_3]_n$. (2):

Reaction of AgNO₃ (17 mg, 0.1 mmol) and abn (12 mg, 0.1 mmol) in methanol-water mixed solvent (6 mL, v/v: 4/2), then aqueous NH₃ solution (25%, 1 mL) was dropped into the mixture to give a clear solution under ultrasonic treatment. The resultant colorless solution was allowed slowly to evaporate at room temperature for two week to give colorless plate crystals of **2**. The crystals were isolated by filtration and washed by ethanol and dried in air. Elemental analysis: Anal. Calc. for AgC₁₄H₁₂N₅O₃: C 41.40, H 2.98, N 17.24%. Found: C 40.99, H 2.84, N 17.37%. Selected IR peaks (cm⁻¹): 3477 (s), 3372 (s), 3213 (m), 2214 (s), 1628 (s), 1602 (s), 1515 (s), 1384(s), 1320 (m), 1176 (m), 834 (m), 830 (m), 698 (w), 547 (m).

Synthesis of [Ag(abn)₂·ClO₄]_n. (3):

Reaction of Ag₂O (23 mg, 0.1 mmol), NaClO₄ (25 mg, 0.2 mmol) and abn (24 mg, 0.2 mmol) in methanol-ethanol-water mixed solvent (7 mL, v/v/v: 3/3/1), then aqueous NH₃ solution (25%, 0.5 mL) was dropped into the mixture to give a clear solution under ultrasonic treatment. The resultant colorless solution was allowed slowly to evaporate at room temperature for two week to give colorless plate crystals of **3**. The crystals were isolated by filtration and washed by ethanol and dried in air. Elemental analysis: Anal. Calc. for AgC₁₄H₁₂ClN₄O₄: C 37.91, H 2.73, N 12.63%. Found: C 37.62, H 2.86, N 12.67%. Selected IR peaks (cm⁻¹): 3477 (s), 3372 (s), 2214 (m), 1628 (s), 1603 (m), 1515 (m), 1320 (w), 1177 (m), 1143 (m), 1109 (m), 1189 (m), 839 (m), 830 (m), 697 (w), 626 (m), 546 (m).

Synthesis of $[Ag(abn)_2 \cdot PF_6]_n$. (4):

Reaction of Ag₂O (23 mg, 0.1 mmol), KPF₆ (37 mg, 0.2 mmol) and abn (24 mg, 0.2 mmol) in methanol-ethanol mixed solvent (5 mL, v/v: 3/2), then aqueous NH₃ solution (25%, 1 mL) was dropped into the mixture to give a clear solution under ultrasonic treatment. The resultant colorless solution was allowed slowly to evaporate at room temperature for two week to give colorless plate crystals of **4**. The crystals were isolated by filtration and washed by ethanol and dried in air. Elemental analysis: Anal. Calc. for AgC₁₄H₁₂F₆N₄P: C 34.38, H 2.47, N 11.46%. Found: C 33.43, H 2.42, N 11.26%. Selected IR peaks (cm⁻¹): 3478 (s), 3372 (s), 3213 (w), 2214 (s), 1628 (s), 1603 (s), 1516 (s), 1320 (m), 1176 (s), 839 (s), 697 (w), 561 (m), 546 (m).

Synthesis of $[Ag(abn)_2 \cdot CF_3COO]_n$. (5):

Reaction of AgOOCCF₃ (22 mg, 0.1 mmol) and abn (24 mg, 0.2 mmol) in methanol-ethanol mixed solvent (5 mL, v/v: 3/2), then aqueous NH₃ solution (25%, 1 mL) was dropped into the mixture to give a clear solution under ultrasonic treatment. The resultant colorless solution was allowed slowly to evaporate at room temperature for two week to give colorless plate crystals of **5**. The crystals were isolated by filtration and washed by ethanol and dried in air. Elemental analysis: Anal. Calc. for AgC₁₆H₁₂F₃N₄O₂: C 42.04, H 2.65, N 12.26%. Found: C 41.05, H 2.44, N 11.82%. Selected IR peaks (cm⁻¹): 3477 (s), 3372 (s), 2214 (m), 1686 (m), 1628 (s), 1603 (s), 1515 (m), 1320 (w), 1208 (m), 1176 (m), 1137 (m), 833 (m), 830 (m), 802 (w), 724 (w), 697 (w), 547 (m).

(3) X-ray Crystallography

Single crystals of the complexes 1-5 with appropriate dimensions were chosen under an optical microscope and mounted on a glass fiber for data collection. Data were collected on a Rigaku R–AXIS RAPID Image Plate single–crystal diffractometer with graphite–monochromated Mo K α radiation source ($\lambda = 0.71073$ Å) operating at 50 kV and 90 mA in ω scan mode for 1, 3 and 5, and a Bruker-AXS CCD diffractometer equipped with a graphite-monochromated Mo K α radiation source ($\lambda = 0.71073$ Å) operating at 50 kV and 30 mA in ω scan mode for 2 and 4. In all cases, the highest possible space group was chosen. All structures were solved by direct methods using SHELXS–97¹ and refined on F^2 by full-matrix least–squares procedures with SHELXL–97.² All structures were examined using the Addsym subroutine of PLATON³ to assure that no additional symmetry could be applied to the models.

(1) G. M. Sheldrick, *SHELXS-97, Program for X-ray Crystal Structure Determination*, University of Göttingen, Germany, 1997.

(2) G. M. Sheldrick, *SHELXL-97, Program for X-ray Crystal Structure Refinement,* University of Göttingen, Germany, 1997.

(3) A. L. Spek, *Implemented as the PLATON Procedure, a Multipurpose Crystallographic Tool,* Utrecht University, Utrecht, The Netherlands, 1998.

Compound	1	2	3	4	5		
Empirical	AgC ₁₉ H ₁₅ N ₄ O ₃	$AgC_{14}H_{12}N_5O$	AgC ₁₄ H ₁₂ ClN ₄ O	$AgC_{14}H_{12}F_6N_4$	AgC ₁₆ H ₁₂ F ₃ N ₄ O		
formula	S	3	4	Р	2		
Formula	487.29	406.16	443.60	489.12	457.17		
weight							
Crystal system	triclinic	monoclinic	monoclinic	monoclinic	triclinic		
Space group	<i>P</i> -1	P2(1)/n	<i>P</i> 2(1)/c	P2(1)/n	<i>P</i> -1		
<i>a</i> (Å)	9.768(2)	9.2284(18)	9.1859(15)	9.4587(19)	9.4187(19)		
<i>b</i> (Å)	10.475(2)	9.4398(19)	9.6910(16)	9.989(2)	10.098(2)		
<i>c</i> (Å)	10.640(2)	17.845(4)	20.348(3)	18.523(4)	10.271(2)		
a (deg)	74.74(3)	90.00	90.00	90.00	111.21(3)		
β (deg)	80.82(3)	92.018(4)	115.309(6)	90.07(3)	106.08(3)		
$\gamma(\text{deg})$	69.50(3)	90.00	90.00	90.00	91.41(3)		
$V(Å^3)$	981.0(3)	1553.6(5)	1637.5(5)	1750.1(6)	866.5(3)		
<i>T</i> (K)	173(2)	173(2)	173(2)	173(2)	173(2)		
Z , D_{calcd}	2, 1.650	4, 1.737	4, 1.799	4, 1.856	2, 1.752		
(Mg/m^3)							
<i>F</i> (000)	488	808	880	960	452		
$\mu(\text{mm}^{-1})$	1.161	1.319	1.420	1.309	1.212		
Ref.	8509 / 3835	6204 / 2616	7992 / 2865	9767 / 3078	6827 / 3038		
collected/uniqu							
e							
$R_{\rm int}$	0.0246	0.0193	0.0225	0.0253	0.0260		
Parameters	253	208	217	235	262		
Final R	$R_1 = 0.0255$	$R_1 = 0.0379$	$R_1 = 0.0320$	$R_1 = 0.0308$	$R_1 = 0.0339$		
indices[$I > 2\sigma($	$wR_2 = 0.0624$	$wR_2 = 0.0929$	$wR_2 = 0.0769$	$wR_2 = 0.0826$	$wR_2 = 0.0849$		
<i>I</i>)]							
R indices (all	$R_1 = 0.0287$	$R_1 = 0.0414$	$R_1 = 0.0338$	$R_1 = 0.0364$	$R_1 = 0.0385$		
data)	$wR_2 = 0.0640$	$wR_2 = 0.0954$	$wR_2 = 0.0779$	$wR_2 = 0.0857$	$wR_2 = 0.0908$		
GOF	1.047	1.143	1.159	1.079	1.115		
Max./ min., $\Delta \rho$	0.856/-0.679	0.689/-0.360	0.690/-0.386	0.933/-0.670	0.725/-0.705		
$(e \cdot Å^{-3})$							
$R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} , wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma w (F_{o}^{2})^{2}]^{1/2}$							

(4) Table S1: Crystal data for 1-5

Complex 1						
Ag1—N1	2.253 (2)	Ag1—N3 ⁱ	2.415 (2)			
Ag1—N4	2.263 (2)	Ag1—N2 ⁱⁱ	2.447 (2)			
N1—Ag1—N4	138.70 (8)	N1—Ag1—N2 ⁱⁱ	99.42 (8)			
N1—Ag1—N3 ⁱ	90.64 (8)	N4—Ag1—N2 ⁱⁱ	111.66 (7)			
N4—Ag1—N3 ⁱ	114.26 (7)	N3 ⁱ —Ag1—N2 ⁱⁱ	91.34 (8)			
Symmetry codes: (i) $x, y+1, z$; (ii) $-x, -y+1, -z$.						
Complex 2						
Ag1—N1	2.211 (4)	Ag1—N3	2.325 (3)			
Ag1—N2 ⁱ	2.319 (3)	Ag1—N4 ⁱⁱ	2.404 (3)			
N1—Ag1—N2 ⁱ	122.71 (12)	N1—Ag1—N4 ⁱⁱ	92.45 (13)			
N1—Ag1—N3	124.07 (13)	N2 ⁱ —Ag1—N4 ⁱⁱ	124.11 (12)			
N2 ⁱ —Ag1—N3	94.72 (12)	N3—Ag1—N4 ⁱⁱ	98.91 (11)			
Symmetry codes: (i) $x+1/2$, $-y+1/2$, $z-1/2$; (ii) $-x+1$, $-y+1$, $-z+1$.						
Complex 3						
Ag1—N3	2.212 (3)	Ag1—N4 ⁱ	2.362 (3)			
Ag1—N1	2.326 (3)	Ag1—N2 ⁱⁱ	2.417 (3)			
N3—Ag1—N1	123.95 (11)	N3—Ag1—N2 ⁱⁱ	102.23 (11)			
N3—Ag1—N4 ⁱ	121.02 (11)	N1—Ag1—N2 ⁱⁱ	94.27 (10)			
N1—Ag1—N4 ⁱ	95.54 (10)	N4 ⁱ —Ag1—N2 ⁱⁱ	117.88 (10)			
Symmetry codes: (i) $x, -y+3/2, z-1/2$; (ii) $-x+1, -y+1, -z+1$.						
Complex 4						
Ag1—N1	2.257 (3)	Ag1—N2 ⁱⁱ	2.377 (3)			
Ag1—N3 ⁱ	2.320 (3)	Ag1—N4	2.440 (3)			
N1—Ag1—N3 ⁱ	124.08 (11)	N1—Ag1—N4	95.24 (11)			
N1—Ag1—N2 ⁱⁱ	125.06 (10)	N3 ⁱ —Ag1—N4	95.09 (11)			
N3 ⁱ —Ag1—N2 ⁱⁱ	96.37 (11)	N2 ⁱⁱ —Ag1—N4	118.53 (10)			
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $x-1/2$, $-y+3/2$, $z-1/2$.						
Complex 5						
Ag1—N3	2.201 (3)	Ag1—N2 ⁱ	2.436 (3)			
Ag1—N1	2.221 (3)	Ag1—N4 ⁱⁱ	2.496 (3)			
N3—Ag1—N1	134.33 (13)	N3—Ag1—N4 ⁱⁱ	98.64 (12)			
N3—Ag1—N2 ⁱ	121.28 (12)	N1—Ag1—N4 ⁱⁱ	97.52 (14)			
N1—Ag1—N2 ⁱ	96.85 (12)	N2 ⁱ —Ag1—N4 ⁱⁱ	100.93 (12)			
Symmetry codes: (i) $-x+2$, $-y+2$, $-z+3$; (ii) $-x+1$, $-y+1$, $-z+1$.						

(5) Table S2: The selected bond distances and angles for 1-5

(6) Figure S1: XRD spectra of 1

(8) Figure S3: The noncovalent interaction between nds and the gird.

(9) Figure S4: The TG curve of complex 1

(10) Figure S5: The photoluminescent properties of complexes 2-5