New Compounds Constructed from Polyoxometalates and Transition Metal Coordination Complexes with Lower Positive Charge

Yan Wang, Yu Peng, Li-Na Xiao, Yang-Yang Hu, La-Mei Wang, Zhong-Min Gao, Tie-Gang Wang, Feng-Qing Wu, Xiao-Bing Cui,* Ji-Qing Xu*

Supplementary information for paper c1ce05633f:

Fig. S1

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2011

Fig. S3

```
Electronic Supplementary Material (ESI) for CrystEngComm This journal is \textcircled{C} The Royal Society of Chemistry 2011
```


Fig. s4. The XPS spectra for tungsten in compound 1 (a), 2 (b), 3 (c) and 4(d).

Fig. s5. The XPS spectra for copper in compound 1 (a), 2 (b), 3 (c) and 4(d).

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2011

Fig. s6. (a) The experimental and simulated XRD pattern for compound **1**. (b) The experimental and simulated XRD pattern for compound **2**. (c) The experimental and simulated XRD pattern for compound **3**. (d) The experimental and simulated XRD pattern for compound **4**.

Fig. s7. The UV-Vis spectra for compound 1, 2, 3 and 4.

Table s1.

The $\pi \cdots \pi$ interactions in compound 1

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0 Deg.

- Cg(I) = Plane number I (= ring number in () above)
- Alpha = Dihedral Angle between Planes I and J (Deg)
- Beta = Angle Cg(I)-->Cg(J) or Cg(I)-->Me vector and normal to plane I (Deg)
 Gamma = Angle Cg(I)-->Cg(J) vector and normal to plane J (Deg)
- Cg-Cg = Distance between ring Centroids (Ang.)
- CgI_Perp = Perpendicular distance of Cg(I) on ring J (Ang.)
- CgJ Perp = Perpendicular distance of Cg(J) on ring I (Ang.)
- Slippage = Distance between Cg(I) and Perpendicular Projection of Cg(J) on Ring I (Ang).
- P,Q,R,S = J-Plane Parameters for Carth. Coord. (Xo, Yo, Zo)

Cg(I) Res(I) Cg(J) [ARU(J)]	Cg-Cg Transformed J-Plane P, Q, R, S Alpha Beta Gamma CgI_Perp CgJ_Perp Slippage	
$Cg(33) [3] \rightarrow Cg(37) [3545.04]$	3.7853 -0.1601-0.3061 0.9384 14.5163 24.15 29.19 5.85 3.766 3.305	
Cg(36) [4] -> Cg(45) [1555.05]	3.8018 -0.5551 0.8007-0.2253 1.3912 3.59 20.89 17.38 3.628 3.552	
$Cg(37) [4] \rightarrow Cg(33) [3554.03]$	3.7853 0.4963-0.0680 0.8655 4.6601 24.15 5.85 29.19 3.305 3.766	
$Cg(45) [5] \rightarrow Cg(36) [1555.04]$	3.8018 -0.5225 0.8329-0.1825 6.0570 3.59 17.38 20.89 3.552 3.628	

The $\pi \cdots \pi$ interactions in compound 3

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0 Deg.

- Cg(I) = Plane number I (= ring number in () above)
- Alpha = Dihedral Angle between Planes I and J (Deg)
- Beta = Angle Cg(I)-->Cg(J) or Cg(I)-->Me vector and normal to plane I (Deg) Gamma = Angle Cg(I)-->Cg(J) vector and normal to plane J (Deg)

- Cg-Cg = Distance between ring Centroids (Ang.)
 CgI_Perp = Perpendicular distance of Cg(I) on ring J (Ang.)
- $CgJ_Perp = Perpendicular distance of Cg(J) on ring I (Ang.)$
- Slippage = Distance between Cg(I) and Perpendicular Projection of Cg(J) on Ring I (Ang).
- P,Q,R,S = J-Plane Parameters for Carth. Coord. (Xo, Yo, Zo)

Cg(I) Res(I) Cg(J) [ARU(J)] Cg-Cg Transformed J-Plane P, Q, R, S Alpha Beta Gamma CgI_Perp CgJ_Perp Slippage

Cg2	[2] -> Cg3	1555 021	3 2773 -	0 1348 0 8267 0 5463	10 8861	33 11	17 37	15 78 3 154	3 1 2 8
Cg3	[2] -> Cg2 [1555 02]	3 2773	0 1268 0 9897 0 0670	4 2760	33 11	15 78	17 37 3 128	3 1 5 4
	[3] -> Co31	[1555.05]	3 7142	0 8388 0 0876 0 5373	10 1421	2 32	18 77	19 70 3 497	3 517
Col2	[3] -> Co33	[1555.05]	3 7174	0 8372 0 0576 0 5438	10.0295	1 99	22.17	20 35 3 485	3 443
Col3	$[3] -> C_{922}$	[1455.04]	3 5998	0.8638.0.0293.0.5029	2 5041	2 78	18 69	18 90 3 406	3 410
Col4	$[3] -> C_{\sigma}32$	[1545.05]	3 6803	0.8428.0.0529-0.5357	0 5879	3 35	24.86	25 19 3 330	3 3 3 9
	$[3] \rightarrow Cg32$	[1445.04]	3 6822	0.8000 0 1646-0 5770	-6 8824	3.63	27.35	20.08 3.458	3 406
Cg15	$[3] \Rightarrow Cg20$	[1445.04]	3 6301	0.8207 0 1658-0 5467	-6.6609	4 64	17.65	16.82 3.475	3 4 5 9
	$[3] \rightarrow Cg24$	[1455.04]	3 5907	0.8909 0.0245 0.4536	2 0709	7 1 1	5.62	5 71 3 573 3	573
	$[3] \Rightarrow Cg23$	[1555.05]	3 7386	0.8388 0.0876 0.5373	10 1421	1.52	18 55	18 28 3 550	3 544
C_{g17}	$[3] \rightarrow Cg21$	[1445 04]	3 6735	0.8000 0.1646-0 5770	-6 8824	3.60	22.08	21 72 3 413	3 4 0 4
C_{g17}	$[3] \Rightarrow Cg20$	[1545.05]	3 6862	0.8520.0.0535-0.5208	0 7396	5 24	22.00	23.06 3.392	3 414
Cg17	[3] -> Cg2	[1545.05]	3 5818	0.8320 0.0535-0.5208	0.7370	1 45	21.07	18 64 3 304	3 3 2 2
	[3] -> Cg32	[1555.05]	3 6875	0.8546.0.0225-0.5187	1 6525	9.61	14.30	160 3 675	3.522
	[4] > Cg20	[1555.05]	2 7222	0.8340 0.0225-0.5187	0.0508	6.83	22.60	24.67 2.202	2 121
Cg19	$[4] -> Cg_{30}$	[1665.03]	2 6822	0.8308 0.0373 0.3333	9.9508	2.63	20.08	24.07 5.592	2 1 5 8
Cg20	[4] -> Cg13	[1665.03]	2 6725	0.7985 0.1054-0.5954	8 5 2 2 7	3.05	20.08	22.33 3.400	2 /12
Cg20	[4] -> Cg17	[1555.05]	2 1672	0.8000 0.1023-0.3830	1 7690	2.65	12 20	22.00 J.404	2 200
Cg21	[4] -> Cg32	$\begin{bmatrix} 1333.03 \end{bmatrix}$	2 5009	0.8428 0.0329-0.3337	16 6079	3.05	12.20	0.03 3.420 .	2 406
Cg22	[4] -> Cg13	[1055.05]	2 61 45	0.0404 0.0124 0.3419	0.0500	2.70	17.50	16.09 5.410	2 4 4 7
Cg22	[4] -> Cg30	[1555.05]	2 0200	0.8308 0.0373 0.3333	9.9508	2.20	17.50	14.20 5.304	2 5 2 0
Cg22	[4] -> Cg33	$\begin{bmatrix} 1333.03 \end{bmatrix}$	2 6201	0.8372 0.0370 0.3438	0 2522	5.25	16.92	25.20 5.519	2 475
Cg24	[4] -> Cg13	$\begin{bmatrix} 1003.03 \end{bmatrix}$	2,5007	0.7985 0.1054-0.5954	0.3333	4.04	10.82	1/.03 3.439	3.4/3
Cg25	[4] -> Cg10	[1655.05]	2.6900	0.8303 0.0078 0.3328	10.9030	/.11	3./1	3.02 $3.3/3$ 2	2 452
Cg25	$[4] -> Cg_{30}$	[1555.05]	2.0899	0.8308 0.0575 0.5555	9.9308	0.81	20.08	20.90 3.289	3.432 2.675
Cg28	[5] -> Cg18	[1555.04]	2.6862	0.7930 0.1032-0.3801	3.0902	9.01	4.09	14.30 3.373	2 2 0 2
Cg29	[5] -> Cg1/	[1565.05]	3.0802	0.8000 0.1023-0.3830	-1.3400	5.24	23.00	22.17 3.414	2.292
Cg30	[5] -> Cg19	[1555.04]	2.7332	0.8904 0.0134 0.4331	12 2072	0.83	24.07	23.00 3.421	3.392
Cg30	[5] -> Cg22	[1555.04]	3.0145	0.8638 0.0293 0.5029	13.30/3	3.58	14.20	1/.50 3.44/	3.504
Cg30	[5] -> Cg25	[1555.04]	3.0899	0.8909 0.0245 0.4536	13.2122	0.81	20.90	20.68 3.452	3.289
Cg31	[5] -> Cg12	[1555.03]	3./142	0.8189 0.0727 0.5692	6.7200	2.32	19.70	18.// 3.51/	3.49/
Cg31	[5]->Cg16	[1555.03]	3./380	0.8305 0.06/8 0.5528	0.5/89	1.52	18.28	18.55 3.544	3.330
Cg32	[5] -> Cg14	[1565.03]	3.0803	0.8109 0.0/21-0.5808	-1.8900	3.33	25.19	24.86 3.339	3.330
Cg32	[5] -> Cg1/	[1565.03]	3.5818	0.8060 0.1023-0.5830	-1.5466	4.45	18.64	21.97 3.322	3.394
Cg32	[5]->Cg21	[1555.04]	3.46/3	0.8193 0.1051-0.563/	5.4390	3.65	8.65	12.28 3.388 .	3.428
Cg33	[5] -> Cg12	[1555.03]	3./1/4	0.8189 0.0/2/ 0.5692	6./200	1.99	20.35	22.17 3.443	3.485
Cg33	[5]->Cg22	[1555.04]	3.8298	0.8638 0.0293 0.5029	13.30/3	3.23	23.26	22.83 3.530	3.519
Cg34	[6] -> Cg3/	[2665.06]	3.3688	-0.2498 0.0461-0.96/2	0.4050	4.13	3.28	3.92 3.361 3	5.363
Cg35	[6] -> Cg36	[2665.06]	3.41/2	-0.2109 0.0495-0.9763	0.6408	0.82	5.13	5.35 3.402 3	5.404
Cg36	[6] -> Cg35	[2665.06]	3.41/2	-0.19/1 0.046/-0.9/93	0.8092	0.82	5.35	5.13 3.404 3	5.402 2.21
Cg3/	[6] -> Cg34	[2665.06]	3.3688	-0.22/2 0.1146-0.96/1	1.05/1	4.13	3.92	3.28 3.363 3	5.361
Cg38	[7]->Cg38	[2566.07]	3.8142	0.0112 0.2266-0.9/39	-14.4836	0.00	28.80	28.80 3.342	3.342
Cg38	[/] -> Cg39	[2566.07]	3.6027	-0.0030 0.2310-0.9730	-14.4616	0.86	22.72	21.88 3.343	3.323
Cg38	[/]->Cg41	[2566.07]	3.5070	0.0050 0.2314-0.9728	-14.4423	0.45	16.59	1/.04 3.353	3.361
Cg39	[/] -> Cg38	[2566.07]	3.6027	0.0112 0.2266-0.9739	-14.4836	0.86	21.88	22.72 3.323	3.343
Cg39	[/] -> Cg40	[2566.07]	3.4564	-0.0074 0.2644-0.9644	-13.9585	1.99	15.61	16.80 3.309	3.329
Cg40	[/] -> Cg39	[2566.07]	3.4564	-0.0030 0.2310-0.9730	-14.4616	1.99	16.80	15.61 3.329	3.309

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2011

Cg41 [7] -> Cg38 [2566.07] 3.5070 0.0112 0.2266-0.9739 -14.4836 0.45 17.04 16.59 3.361 3.353 -----

-----Min or Max 3.277

0.00 2.61 89.72 0.027 2.842

[1455] = -1+X,Y,Z [1555] = X,Y,Z 1655] = 1+X, Y, Z1545] = X,-1+Y,Z1555] = X,Y,Z[1445] = -1+X, -1+Y, Z

The $\pi \cdots \pi$ interactions in compound 4

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0 Deg.

- Cg(I) = Plane number I (= ring number in () above)
- Alpha = Dihedral Angle between Planes I and J (Deg)
- Beta = Angle Cg(I)-->Cg(J) or Cg(I)-->Me vector and normal to plane I (Deg) Gamma = Angle Cg(I)-->Cg(J) vector and normal to plane J (Deg)
- Cg-Cg = Distance between ring Centroids (Ang.)
- CgI_Perp = Perpendicular distance of Cg(I) on ring J (Ang.)
- $CgJ_Perp = Perpendicular distance of Cg(J) on ring I (Ang.)$
- Slippage = Distance between Cg(I) and Perpendicular Projection of Cg(J) on Ring I (Ang).
- P,Q,R,S = J-Plane Parameters for Carth. Coord. (Xo, Yo, Zo)

Cg(I) Res(I) Cg(J) [ARU(J)] Cg-Cg Transformed J-Plane P, Q, R, S Alpha Beta Gamma CgI_Perp CgJ_Perp Slippage

5] 3.8393 -0.3836 0.8652 0.3229 3.0083 15.06 33.47 2	26.05 3.449 3.203
5] 3.7050 -0.4679 0.8731 0.1370 0.7794 12.34 21.08 2	22.09 3.433 3.457
3] 3.8393 -0.6086 0.7539 0.2474 9.6334 15.06 26.05 3	33.47 3.203 3.449
3] 3.7050 -0.6086 0.7539 0.2474 9.6334 12.34 22.09 2	21.08 3.457 3.433
6] 3.7283 0.4152-0.7852 0.4595 13.7454 0.00 11.11	11.11 3.658 3.658 0.71
5] 3.7050 -0.4679 0.8731 0.1370 0.7794 12.34 21.08 2 8] 3.8393 -0.6086 0.7539 0.2474 9.6334 15.06 26.05 3 8] 3.7050 -0.6086 0.7539 0.2474 9.6334 12.34 22.09 2 6] 3.7283 0.4152-0.7852 0.4595 13.7454 0.00 11.11 1	22.09 3.433 3.457 33.47 3.203 3.449 21.08 3.457 3.433 11.11 3.658 3.658 0.71

Min or Max 3.705

0.00 3.12 88.07 0.185 2.481

[1545] = X, -1+Y, Z1555] = X, Y, Z1555 = X, Y, Z1555] = X, 1, Z 1555] = X, Y, Z 1555] = 1+X, Y, Z 2775] = 2-X, 2-Y, -Z 1665] = 1+X, 1+Y, Z 1003] = 1+X,1+11565] = X,1+Y,Z1655] = 1+X,Y,Z1055] = 1+X, 1, Z1565] = X, 1+Y, Z1455] = -1+X, Y, Z[1465] = -1 + X, 1 + Y, Z[1445] = -1+X, -1+Y, Z[1455] = -1 + X, Y, Z1445] = -1+X,-1+Y,Z [1455] = -1 + X, Y, Z1545 = X, -1+Y, Z1645] = 1+X,-1+Y,Z [2756] = 2-X, -Y, 1-Z

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2011

Table s2	The	C-H···O	hvdrogen	bonds in	n compo	ound 1	and 4
1 4010 52.	Inc		nyurogen	UUIIus II	n compe	unu I	unu -

D-H····A	H…A[Å]	D…A[Å]	D-H…A[°]	symop-for-A
Compound 1				
С79-Н79…О33А	2.55	3.26(3)	134	x, y, $-1+z$
С32-Н32…О38А	2.56	3.09(3)	116	x, y, -1+z
C31-H31…O38A	2.40	3.01(3)	123	x, y, -1+z
С90-Н90…О38А	2.40	3.21(4)	146	x, y, -1+z
С23-Н23…О26А	2.42	3.17(3)	137	0.5+x,-0.5-y, -1+z
C84-H84…O18A	2.41	3.25(4)	149	0.5+x, -0.5-y, -1+z
C58-H58…O17A	2.63	3.18 (4)	119	-1-x, -y, 0.5+z
С57-Н57…О17А	2.49	3.10 (5)	123	-1-x, -y, -0.5+z
С29-Н29…О30А	2.58	3.09(4)	115	-1-x, -y, -0.5+z
С28-Н28…О30А	2.47	3.04(5)	120	-1-x, -y, -0.5+z
C82-H82…O22A	2.41	3.17(7)	138	-0.5-x,0.5+y,-0.5+z
C47-H47…O24A	2.24	3.16(3)	173	0.5+x, -0.5-y, z
C94-H94…O8	2.64	3.17(4)	117	
С8-Н8…О29А	2.54	3.25(3)	134	0.5+x, -0.5-y, z
С98-Н98…О29	2.54	3.23(3)	132	
C103-H103…O13A	2.29	3.19(3)	162	-0.5-x,-0.5+y,-
				0.5+z
C103-H103…O1A	2.72	3.19(3)	112	-0.5-x,-0.5+y, 0.5+z
C103-H103…O15A	2.69	3.20(3)	115	-0.5-x,-0.5+y,-
				0.5+z
C103-H103…O23A	2.53	3.14(3)	124	-0.5-x,-0.5+y,-
				0.5+z
C104-H104…O23A	2.64	3.19(3)	119	-0.5-x,-0.5+y,-
				0.5+z
C2-H2…O26A	2.41	3.22(3)	145	0.5+x,-0.5-y, -1+z
C53-H53…O11A	2.64	3.21(5)	123	-1-x, -y, -0.5+z
С74-Н74…О5А	2.41	3.17(3)	138	-1-x,-1-y,-0.5+z
C18-H18…O17A	2.47	3.25(3)	142	-0.5-x,-0.5+y,-
				0.5+z
Compound 4				
C58-H58…O14A	2.60	3.20(3)	122	-1+x, y, z
C54-H54…O10A	2.59	3.25(2)	128	-x, 1-y, -z
С63-Н63…О11А	2.32	3.23(3)	166	1+x, y, z
C11-H11…O15A	2.71	3.21(2)	115	1-x, 2-y, -z
С52-Н52…О9	2.39	3.14(2)	121	
С37-Н37…О22	2.56	3.21(2)	128	
С70-Н70…О40А	2.51	3.16(2)	127	1+x, -2+y, z
C18-H18…O29A	2.58	3.25(2)	129	x, -1+y, z
С23-Н23…О43	2.36	3.16(3)	144	
C43-H43…O41A	2.84	3.02(3)	92	x, -1+y, z
С49-Н49…О27А	2.95	3.21(3)	98	-1+x, -1+y, z