Electronic supplementary information

A series of 1D, 2D and 3D coordination polymers based on a 5-(benzonic-4-ylmethoxy)isophthalic acid: syntheses, structures and photoluminescence

Ying-Ying Liu, Jing Li, Jian-Fang Ma,* Ji-Cheng Ma, Jin Yang*

Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

* Correspondence authors E-mail: jianfangma@yahoo.com.cn (J.-F. Ma) Fax: +86-431-85098620 (J.-F. Ma) E-mail: yangjinnenu@yahoo.com.cn (J. Yang)

1			
Zn(1)-O(7)	1.9275(16)	$Zn(1)-O(5)^{\#1}$	1.9451(15)
$Zn(1)-O(4)^{\#2}$	1.9494(15)	Zn(1)-O(1W)	2.105(2)
$Zn(1)-O(2)^{\#3}$	2.4591(15)		
O(7)-Zn(1)-O(5) ^{#1}	110.13(8)	O(7)-Zn(1)-O(4) ^{#2}	141.42(7)
$O(5)^{\#1}$ -Zn(1)-O(4) ^{#2}	105.41(7)	O(7)-Zn(1)-O(1W)	97.93(7)
$O(5)^{\#1}$ -Zn(1)-O(1W)	91.09(7)	$O(4)^{#2}$ -Zn(1)-O(1W)	95.89(7)
O(7)-Zn(1)-O(2) ^{#3}	93.53(7)	$O(5)^{\#1}$ -Zn(1)-O(2) ^{#3}	85.50(6)
$O(4)^{#2}$ -Zn(1)-O(2) ^{#3}	74.54(6)	O(1W)-Zn(1)-O(2) ^{#3}	168.52(7)
2			
$Zn(1)-O(4)^{\#1}$	1.9911(14)	Zn(1)-N(1)	2.0948(14)
Zn(1)-N(2)	2.1428(18)	Zn(1)-O(2)	2.1674(18)
Zn(1)-O(1)	2.2924(16)	$Zn(1)-O(6)^{\#2}$	2.3044(15)
$O(4)^{\#1}$ -Zn(1)-N(1)	123.25(5)	$O(4)^{\#1}$ -Zn(1)-N(2)	95.27(5)
N(1)-Zn(1)-N(2)	78.83(6)	$O(4)^{\#1}$ -Zn(1)-O(2)	142.71(6)
N(1)-Zn(1)-O(2)	93.06(6)	N(2)-Zn(1)-O(2)	100.42(6)
$O(4)^{\#1}$ -Zn(1)-O(1)	87.67(5)	N(1)- $Zn(1)$ - $O(1)$	148.27(5)
N(2)-Zn(1)-O(1)	92.51(6)	O(2)-Zn(1)-O(1)	58.22(5)
$O(4)^{\#1}$ -Zn(1)-O(6) $^{\#2}$	88.63(5)	N(1)-Zn(1)-O(6) ^{#2}	89.75(6)
N(2)-Zn(1)-O(6) ^{#2}	168.24(5)	O(2)-Zn(1)-O(6) ^{#2}	82.81(5)
O(1)-Zn(1)-O(6) ^{#2}	98.74(6)		
3			
Zn(1)-O(7)	1.9683(15)	Zn(1)-N(5)	2.0129(19)
$Zn(1)-O(2)^{\#1}$	2.029(2)	Zn(1)-N(1)	2.0763(19)
$Zn(1)-O(1)^{\#1}$	2.461(2)		
O(7)-Zn(1)-N(5)	120.74(8)	$O(7)$ -Zn(1)- $O(2)^{\#1}$	113.26(7)
$N(5)-Zn(1)-O(2)^{\#1}$	115.42(9)	O(7)-Zn(1)-N(1)	102.69(7)
N(5)-Zn(1)-N(1)	106.56(7)	$O(2)^{\#1}$ -Zn(1)-N(1)	92.76(9)
O(7)-Zn(1)-O(1) ^{#1}	95.07 (7)	N(5)-Zn(1)-O(1) ^{#1}	86.25(8)
$O(2)^{\#1}$ -Zn(1)-O(1) $^{\#1}$	55.43(9)	$N(1)-Zn(1)-O(1)^{\#1}$	147.89(9)
4			
Zn(1)-O(6)	1.9695(15)	$Zn(1)-O(11)^{\#1}$	1.9790(14)
Zn(1)-N(1)	2.010(2)	Zn(1)-N(12)	2.0409(16)
Zn(2)-O(8)	1.9793(15)	$Zn(2)-O(4)^{\#2}$	2.0052(14)

 Table S1. Selected bond distances (Å) and angles (°) for compounds 1-7.

3				
3	1	•		
		ł	1	
_	-		,	

$O(11)^{\#1}$ -Zn(1)-N(12)	112.24(7)	N(1)-Zn(1)-N(12)	105.33(8)
O(8)-Zn(2)-O(4) ^{#2}	99.02(6)	O(8)-Zn(2)-N(8)	115.98(7)
$O(4)^{#2}$ -Zn(2)-N(8)	111.03(7)	O(8)-Zn(2)-N(6)	109.15(7)
$O(4)^{#2}$ -Zn(2)-N(6)	116.15(7)	N(8)-Zn(2)-N(6)	105.84(7)
5			
Zn(1)-O(7)	1.9358(12)	$Zn(1)-O(2)^{\#1}$	1.9491(11)
$Zn(1)-O(1)^{\#2}$	1.9957(13)	Zn(1)-N(1)	2.0004(15)
$O(7)$ -Zn(1)- $O(2)^{\#1}$	115.30(5)	O(7)-Zn(1)-O(1) ^{#2}	104.90(5)
$O(2)^{\#1}$ -Zn(1)-O(1) $^{\#2}$	114.22(6)	O(7)-Zn(1)-N(1)	120.50(6)
$O(2)^{\#1}$ -Zn(1)-N(1)	101.16(6)	$O(1)^{#2}$ -Zn(1)-N(1)	100.19(6)
6			
Zn(1)-O(1)	1.9732(17)	Zn(1)-N(2)	2.021(2)
$Zn(1)-N(6)^{\#1}$	2.023(2)	$Zn(1)-O(3)^{\#2}$	2.1178(19)
$Zn(1)-O(4)^{\#2}$	2.2648(19)		
O(1)-Zn(1)-N(2)	93.47(8)	O(1)-Zn(1)-N(6) ^{#1}	101.68(8)
$N(2)-Zn(1)-N(6)^{\#1}$	106.60(9)	O(1)-Zn(1)-O(3) ^{#2}	102.92(8)
$N(2)-Zn(1)-O(3)^{\#2}$	88.53(9)	$N(6)^{\#1}$ -Zn(1)-O(3) $^{\#2}$	150.16(8)
O(1)-Zn(1)-O(4) ^{#2}	131.50(8)	$N(2)-Zn(1)-O(4)^{\#2}$	126.74(8)
$N(6)^{\#1}$ -Zn(1)-O(4) $^{\#2}$	92.21(8)	$O(3)^{#2}$ -Zn(1)-O(4) ^{#2}	58.64(7)
7			
$Cu(1)-O(8)^{\#1}$	1.9324(17)	$Cu(1)-O(5)^{\#2}$	1.9480(15)
Cu(1)-O(1)	1.9600(16)	Cu(1)-O(2)	1.9718(15)
Cu(1)-O(1W)	2.287(3)	$Cu(2)-O(4)^{\#3}$	1.9156(15)
Cu(2)-O(3)	1.9550(15)	Cu(2)-O(1)	1.9686(15)
$Cu(2)-O(1)^{\#4}$	1.9935(15)	$Cu(2)-O(7)^{\#5}$	2.374(2)
Cu(2)Cu(2) ^{#4}	3.0274(5)		
$O(8)^{\#1}-Cu(1)-O(5)^{\#2}$	84.63(7)	$O(8)^{\#1}$ -Cu(1)-O(1)	174.81(8)
$O(5)^{#2}$ -Cu(1)-O(1)	92.41(6)	$O(8)^{\#1}$ -Cu(1)-O(2)	92.91(7)
$O(5)^{#2}$ -Cu(1)-O(2)	151.81(8)	O(1)-Cu(1)-O(2)	91.71(7)
$O(8)^{\#1}$ -Cu(1)-O(1W)	91.33(10)	$O(5)^{#2}$ -Cu(1)-O(1W)	114.03(9)
O(1)-Cu(1)-O(1W)	85.98(9)	O(2)-Cu(1)-O(1W)	94.06(8)
$O(4)^{\#3}$ -Cu(2)-O(3)	84.57(6)	$O(4)^{\#3}$ -Cu(2)-O(1)	174.10(7)

Zn(2)-N(6)

O(6)-Zn(1)-N(1)

O(6)-Zn(1)-N(12)

2.0536(17)

120.29(7)

113.25(7)

2.012(2)

95.98(7)

109.65(7)

Zn(2)-N(8)

O(6)-Zn(1)-O(11)^{#1}

 $O(11)^{\#1}$ -Zn(1)-N(1)

O(3)-Cu(2)-O(1)	99.76(6)	$O(4)^{\#3}$ -Cu(2)-O(1)^{\#4}	97.11(6)
$O(3)-Cu(2)-O(1)^{\#4}$	158.32(9)	$O(1)-Cu(2)-O(1)^{\#4}$	80.35(7)
$O(4)^{\#3}$ -Cu(2)-O(7) $^{\#5}$	93.29(8)	$O(3)-Cu(2)-O(7)^{\#5}$	97.46(9)
$O(1)-Cu(2)-O(7)^{\#5}$	82.23(8)	$O(1)^{#4}$ -Cu(2)-O(7) ^{#5}	103.99(8)
$O(4)^{#3}$ -Cu(2)-Cu(2) ^{#4}	136.75(5)	$O(3)-Cu(2)-Cu(2)^{\#4}$	136.24(5)
$O(1)-Cu(2)-Cu(2)^{#4}$	40.48(5)	$O(1)^{#4}$ -Cu(2)-Cu(2) ^{#4}	39.87(4)
$O(7)^{\#5}$ -Cu(2)-Cu(2) ^{#4}	94.09(6)		

Symmetry codes for 1: ^{#1} -x+2, -y, -z+2; ^{#2} x, -y-1/2, z-1/2; ^{#3} -x+1, y+3/2, -z+3/2. For 2: ^{#1} x-1, y, z; ^{#2} -x,-y+2,-z+2. For 3: ^{#1} x, y+1, z+1. For 4: ^{#1} -x+1, -y+1, -z+1; ^{#2} -x+2, -y+1, -z. For 5: ^{#1} -x+2, y+1/2, -z+3/2; ^{#2} -x+2,-y,-z+2. For 6: ^{#1} -x+3/2, y+1/2, -z+1; ^{#2} x+1/2, -y+1/2, -z-1. For 7: ^{#1} -x+4, -y+1, -z+3; ^{#2} x, y-1, z; ^{#3} -x+2, -y+2, -z+2; ^{#4} -x+2, -y+1, -z+2; ^{#5} x-1, y, z-1.

Table S2. Hydrogen-bonding parameters for 1-7 (in Å and deg)

	D-H···A	d(E	<u>о-</u> Н)	$d(D \cdots A)$
∠(D-H···A)		Ň	,	~ /
1				
O(1W)-H(1A)O(4) ^{#4}	0.841(18)	2.33(2)	3.110(2)	154(3)
O(1W)-H(1B)O(6) ^{#5}	0.82(3)	2.02(3)	2.808(3)	161(3)
2				
O(7)-H(7A)O(3) ^{#5}	0.82	1.84	2.5806(18)	150.2
O(1W)-H(1A)O(1)	0.936(18)	2.047(19)	2.968(3)	168(3)
O(1W)-H(1B)O(1) ^{#6}	0.915(18)	2.110(19)	3.017(3)	171(3)
O(2W)-H(2A)O(2) ^{#4}	0.904(19)	2.09(2)	2.932(6)	155(5)
4				
O(1W)-H(1B)O(2W) ^{#3}	0.835(17)	2.192(18)	3.025(3)	176(4)
O(1W)-H(1A)O(2)	0.875(17)	2.20(2)	3.052(4)	163(5)
O(2W)-H(2A)O(9)	0.893(18)	1.99(2)	2.838(3)	158(7)
O(1)-H(1)O(5) ^{#4}	0.82	1.81	2.588(2)	157.7
O(14)-H(14)O(10) ^{#5}	0.82	1.78	2.566(2)	160.1
5				
O(5)-H(5A)O(6) ^{#3}	0.82	1.85	2.6421(18)	162.7
6				
O(6)-H(6A)O(4) ^{#3}	0.82	1.86	2.679(3)	174.2
7				

O(1W)-H(1A)O(6) ^{#6}	0.842(19)	2.38(3)	3.141(3)	150(4)
O(1W)-H(1B)O(7) ^{#7}	0.851(19)	2.09(2)	2.895(3)	158(4)
O(1)-H(1)O(2) ^{#8}	0.79(3)	2.05(3)	2.790(3)	156(3)
O(2W)-H(2A)O(1W)	0.92(2)	2.56(10)	3.119(17)	119(9)

Symmetry code for 1: ^{#4} -x+2, -y-1, -z+2; ^{#5} -x+2, y+1/2, -z+3/2. For 2: ^{#4} -x+1, -y+1, -z+1; ^{#5} x-1, y+1, z+1; ^{#6} -x, -y+1, -z+2. For 4: ^{#3} -x+2, -y, -z; ^{#4} x, y-1, z; ^{#5} x, y+1, z. For 5: ^{#3} -x+1, y-1/2, -z+5/2. For 6: ^{#3} -x+1, -y, z+1. For 7: ^{#6} x-1, y, z; ^{#7} -x+3, -y+1, -z+3; ^{#8} -x+3, -y+1, -z+2.

Fig. S1. View of the four-connected node of HL anion in 1.

Fig. S3. TGA curves of compounds 1-7.

Fig. S4. Luminescence decay curves for compounds **1-6** (the black circles represent experimental data, and the solid red lines represent fitting results, H₃L: $\lambda_{ex} = 364$ nm, $\lambda_{em} = 392$ nm; **1**: $\lambda_{ex} = 358$ nm, $\lambda_{em} = 413$ nm; **2**: $\lambda_{ex} = 372$ nm, $\lambda_{em} = 424$ nm; phen: $\lambda_{ex} = 325$ nm, $\lambda_{em} = 380$ nm; **3**: $\lambda_{ex} = 372$ nm, $\lambda_{em} = 426$ nm; **4**: $\lambda_{ex} = 352$ nm, $\lambda_{em} = 423$ nm; **5**: $\lambda_{ex} = 353$ nm, $\lambda_{em} = 395$ nm; **6**: $\lambda_{ex} = 353$ nm, $\lambda_{em} = 462$ nm; L⁴: $\lambda_{ex} = 305$ nm, $\lambda_{em} = 443$ nm).

Fig. S5 The simulated (green) and experimental (red) XRPD patterns for the compounds 1-7 (the diffraction peaks of both simulated and experimental patterns match well in relevant positions, indicating that the phase purities of compounds 1-7 are good).