

Fig. S1 XPS spectra of the Fe2p regions

It is well known that the binding energy of element increases with the increase of its valence state. And the binding energy of Fe $2p_{3/2}$ is about 709eV for Fe²⁺, and 711eV for Fe³⁺. (J. Phys. D: Appl. Phys. 44 (2011) 075003). Fig. S1 shows the X-ray photoelectron spectra (XPS) signals of the Fe 2p regions, and the peak of Fe $2p_{3/2}$ at 710.76, which indicates that both Fe²⁺ and Fe³⁺ should be existed showing the formation of Fe₃O₄. The satellite peak situated at about 719 eV is a characteristic peak of Fe³⁺ in γ -Fe₂O₃, suggesting that the Fe₃O₄ nanoparticles were partly oxides.