Supporting Information

A Novel Nanoreactor Framework of Iodine-Incorporated BiOCl Core-Shell Structure: Enhanced Light-Harvesting System for Photocatalysis

Kun Zhang, Dieqing Zhang, Jie Liu, Kuaixia Ren, Hui Luo, Yingjie Peng, Guisheng Li and Xibin Yu*

Shanghai Key Lab of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China.

xibinyu@shnu.edu.cn

Table S1. Synthetic conditions for iodine-incorporated BiOCl hollow, core-shell and solid microspheres.

Structure	V (H ₂ O)	V (BiCl ₃)	PVP	citric acid	C (NaI)	Т	Time
	(ml)	(ml)	(g)	monohydrate (g)	(mmol)	(°C)	(h)
Hollow	196	4	0.020	0.380	0.910	80	3
Core-shell	196	4	0.020	0.380	1.350	80	3
Solid	196	4	0.020	0.380	2.720	80	3

Table S2. The domain crystal size of BiOCl hollow and I-BiOCl core-shell product (the formation process of products) obtained by Williamson-Hall Method (the volume-weighted size) through the Jade 6.0 software from the width of the peaks (2θ =25.86).

Structure	Crystalline size (nm) calculate by Williamson-Hall Method						
Structure	30s	1min	4min	3hours			
BiOCl Hollow	54±2	54±4	93±3	100±4			
I-BiOCl Core-shell	51±2	60±2	84±2	>100			

Table S3. The structure, surface area, $n_{(C1)}/n_{(1)}$, band gap and the photocatalytic performance of the iodine-incorporated BiOCl products.

					C/C_0						
Structure	surface area/	n _{(Cl})/	band		visible light irradiation				solar light irradiation		
	(m ² /g)	n _(I)	/eV	10	30	50	70	90	10	30	50
				min	min	min	min	min	min	min	min
Hollow	75.6	0.052	2.43	0.589	0.147	0.059	0.037	0.02	0.151	0	0
Core-shell	51.5	0.065	2.28	0.37	0.086	0.025	0.013	0.004	0.092	0	0
Solid	8.2	0.163	2.04	0.923	0.665	0.435	0.306	0.206	0.796	0.358	0.157

Fig. S1 EDS analysis of iodine-containing BiOCl core-shell microsphere produced in 1.350 mmol NaI solution at 80 $^{\circ}$ C for different times: (a) 30 sec, (b) 1 min, (c) 4 min, and (d) 3 hours.

Fig. S2 FESEM and TEM images of pure BiOCl products without iodine-incorporation harvested at different intervals of reaction times, (a-c) 30 sec, (d-f) 1 min, (g-i) 4min, (j-l) 3hours.

Fig. S3 XRD patterns of pure BiOCl products without iodine-incorporation harvested at different intervals of reaction times: (a)30s, (b)1min, (c)4min and (d)3hours (Inset the standard card: JCPDS 06-0249).

Fig. S4 EDS analysis on the atomic percentages of the iodine-incorporated (a) hollow and (b) solid BiOCl samples.

Fig. S5 (a-c) FESEM images of iodine-incorporation BiOCl (I-BiOCl) powders obtained without using PVP, (d) TEM images of iodine-incorporation BiOCl (I-BiOCl) powders.

Fig. S6 XRD of iodine-incorporation BiOCl (I-BiOCl) powders obtained without using PVP. (Inset the standard card: JCPDS 06-0249)

Fig. S7 Comparison of the adsorption-desorption equilibrium of iodine-incorporated BiOCl (I-BiOCl) with (a) hollow, (b) core-shell, (c) solid structure, (d) $TiO_{2-x-y}N_xF_y(SC)$ -3 with (e) Bi_2WO_6 .

Fig. S8 (A) UV–vis absorption spectra of phenol over the 3D I-BiOCl core-shell microspheres during the photocatalytic process. (B)Comparison of visible-light photocatalytic activities of iodine-incorporated BiOCl (I-BiOCl) with (a) hollow, (b) shell-core, (c) solid structure, $(d)TiO_{2-x-y}N_xF_y(SC)$ -3, (e) Bi₂WO₆ and (f) no catalyst on the degradation of 20 mg·L⁻¹ phenol under visible-light irradiation (λ >420 nm). (75 W halogen-tungsten lamp as light source)

Fig. S9 XRD pattern of the iodine-incorporated core-shell BiOCl sample (a) before and (b) after the photocatalytic reaction. (Inset the standard card: JCPDS 06-0249)

Fig. S10 FESEM images of the iodine-incorporated BiOCl core-shell sample after the photocatalytic reaction.

Fig. S11 (a) XPS survey spectrum of iodine-incorporated BiOCl core-shell sample before and after irradiation, (b) high-resolution XPS spectra of the I3d region taken on the iodine-incorporated BiOCl core-shell sample before and after irradiation, (c) EDS analysis on the atomic percentages of the iodine-incorporated core-shell sample after irradiation.

Fig. S12 Proposed model of light transfer paths, reflection, and scattering processes within the hierarchically core-shell structure.

Fig. S13 PL spectra of BiOCl hollow microspheres (a) and iodine-containing BiOCl with (b) hollow, (c) shell-core, and (d) solid structure.