Electronic Supplementary Information

Structural diversity of transition-metal complexes derived from N-propionic acid functionalized 1,4,7-triazacyclononane: From enchanting cluster motifs to unprecedented homometallic polymeric networks

Zhong Zhang *a, Jian-Qi Lu a, Di-Feng Wu a, Zi-Lu Chen a, Fu-Pei Liang *a, and Zhi-Lin Wang b

- ^a School of Chemistry & Chemical Engineering of Guangxi Normal University, Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guilin 541004, P. R. China
- ^b State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University, Nanjing 210093, P. R. China

^{*} To whom correspondence should be addressed. E-mail: zhangzhong@mailbox.gxnu.edu.cn

Contents

Table S1 Selected bond lengths (Å), angles (°) and hydrogen bonding for complex 1
Table S2 Selected bond lengths (Å), angles (°) and hydrogen bonding for complex 2
Table S3 Selected bond lengths (Å), angles (°) and hydrogen bonding for complex 3
Table S4 Selected bond lengths (Å), angles (°) and hydrogen bonding for complex 4
Fig. S1 IR spectra of the complexes !-4

Cu(1)–O(1)	2.099(4)	Cu(1	2.120(5)	
Cu(2)–O(2)	1.959(4)	Cu(2)–O(3)		1.936(5)
Cu(2)–O(1)	2.511(4)			
O(1)–Cu(1)–N(1)	89.29(19)	O(1)–C	$u(1) - N(1)^{i}$	171.0(2)
O(1)-Cu(1)-N(1) ⁱⁱ	101.4(2)	$O(1)-Cu(1)-O(1)^{i}$		85.71(17)
N(1)-Cu(1)-N(1) ⁱ	84.4(2)	O(1)–Cu(2)–O(2)		56.49(15)
O(1)–Cu(2)–O(3)	90.1(2)	O(1)–Cu(2)–O(1) ⁱⁱ		150.37(13)
O(1)–Cu(2)–O(2) ⁱⁱ	100.99(15)	O(1)–Cu(2)–O(3) ⁱⁱ		110.6(2)
O(2)–Cu(2)–O(3)	90.3(3)	O(2)–Cu(2)–O(2) ⁱⁱ		90.00(19)
O(2)–Cu(2)–O(3) ⁱⁱ	166.8(3)	O(3)–Cu(2)–O(3) ⁱⁱ		92.3(3)
D–H···A	d(D–H)	d(H···A)	D(D····A)	\angle (D–H···A)
O(3)-H(3C)···O(2) ⁱⁱⁱ	0.85	2.05	2.678(8)	130
O(3)-H(3C)····O(12)	0.85	2.56	3.167(10)	129
O(3)–H(3D)…O(22)	0.85	2.17	2.695(15)	120

Table S1 Selected bond lengths (Å), angles (°) and hydrogen bonding for complex 1

Symmetry codes: i) 1–y,x–y,z; ii) y,x,1/2–z; iii) 1–y,1+x–y,z.

Zn(2)–N(1)	2.099(3)	Zn(2)–N(2)	2.093(3)
Zn(2)–N(3)	2.087(3)	Zn(2)–O(1)		2.080(2)
Zn(2)–O(3)	2.059(3)	Zn(2)–O(5)		2.068(2)
Zn(1)–O(2)	2.049(2)	Zn(1)–O(7)		2.110(3)
Zn(3)–O(6)	2.063(2)	Zn(3)–O(11)		2.076(4)
Zn(3)–O(12)	2.062(3)	Zn(3)	–O(13)	2.107(4)
Zn(4)–O(4)	2.074(3)	Zn(4)–O(8)	2.083(4)
Zn(4)–O(9)	2.031(4)	Zn(4)	–O(10)	2.074(3)
O(2)–Zn(1)–O(7)	86.09(11)	O(7)–Zr	$n(1) - O(7)^{i}$	180.00
O(2)–Zn(1)–O(7) ⁱ	93.91(11)	O(2)–Zr	$n(1) - O(2)^{i}$	90.77(11)
O(2)–Zn(1)–O(2) ⁱⁱ	180.00	O(2)–Zn	$(1) - O(2)^{iii}$	89.23(11)
O(1)–Zn(2)–O(3)	86.64(11)	O(1)–Zı	n(2)–O(5)	87.96(10)
O(1)–Zn(2)–N(1)	91.03(11)	O(1)–Zn(2)–N(2)		175.41(11)
O(1)–Zn(2)–N(3)	95.45(11)	O(3)–Zn(2)–O(5)		85.90(11)
O(3)–Zn(2)–N(1)	96.80(13)	O(3)–Zn(2)–N(2)		92.13(11)
O(3)–Zn(2)–N(3)	176.64(12)	O(5)–Zn(2)–N(1)		177.06(13)
O(5)–Zn(2)–N(2)	96.37(11)	O(5)–Zn(2)–N(3)		91.54(11)
N(1)–Zn(2)–N(2)	84.72(12)	N(1)-Zn(2)-N(3)		85.81(13)
N(2)–Zn(2)–N(3)	85.98(12)	O(6)–Zn(3)–O(11)		94.29(10)
O(11)–Zn(3)–O(12)	88.58(10)	O(11)–Zn(3)–O(13)		175.91(14)
O(6)–Zn(3)–O(12)	91.11(10)	O(6)–Zn(3)–O(13)		88.68(10)
O(6)–Zn(3)–O(6) ⁱⁱⁱ	87.11(10)	O(6)–Zn(3)–O(12) ⁱⁱⁱ		176.73(11)
O(12)–Zn(3)–O(13)	88.54(10)	O(12)–Zn(3)–O(12) ⁱⁱⁱ		90.54(11)
O(8)–Zn(4)–O(9)	179.21(13)	O(4)–Zn(4)–O(8)		93.70(10)
O(4)–Zn(4)–O(9)	86.85(10)	O(8)–Zn(4)–O(10)		88.34(10)
O(4)-Zn(4)-O(10)	177.27(11)	O(9)–Zn(4)–O(10)		91.09(10)
O(4)-Zn(4)-O(10) ⁱⁱⁱ	89.71(11)	O(4)–Zn(4)–O(4) ⁱⁱⁱ		91.97(11)
O(10)–Zn(4)–O(10) ⁱⁱⁱ	88.52(12)			
₽_₩۵	d(D H)	d(HA)		
$\mathbf{D} = \mathbf{\Pi} \cdot \mathbf{A}$	u(D-II)	2 00	D(D - A)	∠(D-⊓…A)
$O(7) = H(7D) = O(1)^{ii}$	0.85	2.00	2.080(3)	137
U(/) - H(/D) - U(1)	0.85	2.08	2.686(3)	128
U(6) - H(8C) - U(3)	0.85	1.88	2.636(3)	147

Table S2 Selected bond lengths (Å), angles (°) and hydrogen bonding for complex 2

O(8)-H(8D)-O(3) ⁱⁱⁱ	0.85	1.89	2.636(3)	145
O(9)–H(9C)···O(16)	0.85	2.39	2.721(6)	104
O(9)–H(9D)···O(16)	0.85	2.26	2.721(6)	114
O(10)–H(10D)····O(14) ^{iv}	0.85	2.29	2.770(4)	116
$O(10)-H(10C)\cdots O(33)^{v}$	0.85	2.45	3.093(4)	133
O(11)–H(11C)…O(5)	0.85	1.92	2.678(3)	148
O(11)–H(11D)····O(5) ⁱⁱⁱ	0.85	2.00	2.678(3)	136
O(12)-H(12C)···O(15)	0.85	2.34	2.737(4)	109
O(12)-H(12D)····O(15)	0.85	2.33	2.737(4)	110
O(13)-H(13D)···O(13) ^{vi}	0.85	2.54	3.095(5)	117
O(13)-H(13C)···O(9) ^{vii}	0.85	2.50	3.095(5)	128
O(13)-H(13D)O(13) ^{vii}	0.85	2.33	3.032(5)	140
O(13)-H(13D)···O(6) ^{viii}	0.85	2.23	2.884(4)	134
O(15)–H(15C)···O(31)	0.85	2.34	3.093(4)	147

Symmetry codes: i) 2–x,y,2–z; ii) 2–x,–y,2–z; iii) x,–y,z; iv) x,–1+y,z; v) 1–x,–y,1–z; vi) 1–x,y,1–z; vii) 2–x,y,1–z; viii) 2–x,–y,1–z.

Cd(1)–O(3)	2.356(4)	$Cd(1)-O(3)^{i}$		2.301(4)
$Cd(1)-O(4)^{i}$	2.626(5)	Cd(1)–O(5)		2.306(4)
Cd(1)–N(1)	2.380(5)	Cd(1)–N(2)		2.412(5)
Cd(1)–N(3)	2.353(5)			
N(1)-Cd(1)-N(2)	76.6(2)	N(1)-C	77.97(18)	
N(2)-Cd(1)-N(3)	76.29(19)	O(3)–Cd(1)–N(1)		106.31(17)
O(3)-Cd(1)-N(2)	79.62(18)	O(3)-Cd(1)-N(3) ⁱ		130.95(16)
O(3) ⁱ -Cd(1)-N(1)	93.70(17)	O(3) ⁱ -Cd(1)-N(2)		149.1(2)
$O(3)^{i}-Cd(1)-N(3)$	130.95(18)	O(4) ⁱ –Cd(1)–N(1)		105.29(18)
$O(4)^{i}-Cd(1)-N(2)$	162.52(19)	$O(4)^{i}$ -Cd(1)-N(3)		87.02(18)
O(5)-Cd(1)-N(1)	159.67(18)	O(5)-Cd(1)-N(2)		95.25(19)
O(5)-Cd(1)-N(3)	82.00(17)	O(3)-Cd(1)-O(3) ⁱ		75.10(17)
O(3)-Cd(1)-O(4) ⁱ	115.63(15)	O(3)–Cd(1)–O(5)		90.18(16)
O(3) ⁱ -Cd(1)-O(4) ⁱ	48.26(16)	O(3) ⁱ -Cd(1)-O(5)		102.17(16)
O(4) ⁱ -Cd(1)-O(5)	77.01(17)			
D–H···A	d(D–H)	d(H···A)	$D(D \cdots A)$	∠(D–H···A)
O(1)-H(1C)···O(10) ⁱⁱ	0.85	2.11	2.900 (7)	154
O(6)–H(6C)····O(4) ⁱⁱ	0.85	2.28	2.938(7)	135

Table S3 Selected bond lengths (Å), angles (°) and hydrogen bonding for complex 3

Symmetry codes: i) 2–x,1–y,2–z; ii) 2–x,1–y,1–z; iii) x,–1+y,z.

Cd(1)–O(1)	2.321(8)	$Cd(1)-O(2)^{i}$		2.267(8)
Cd(1)–O(3)	2.313(9)	Cd(1)–N(1)		2.414(9)
Cd(1)–N(2)	2.340(10)	Cd(1)–N(3)		2.376(11)
O(1)-Cd(1)-O(2) ⁱ	84.3(3)	O(1)-Cd(1)-O(3)		85.4(3)
O(2) ⁱ -Cd(1)-O(3)	93.0(3)	N(1)-Cd(1)-N(2)		76.0(3)
N(1)-Cd(1)-N(3)	75.0(3)	N(2)-Cd(1)-N(3)		76.6(4)
O(1)-Cd(1)-N(1)	81.3(3)	O(1)–Cd(1)–N(2)		157.2(3)
O(1)-Cd(1)-N(3)	95.4(3)	O(2) ⁱ –Cd(1)–N (1)		161.3(3)
O(2) ⁱ –Cd(1)–N (2)	117.3(3)	O(2) ⁱ -Cd(1)-N (3)		94.7(3)
O(3)–Cd(1)–N(1)	97.6(3)	O(3)–Cd(1)–N(2)		99.8(4)
O(3)–Cd(1)–N(1)	172.4(3)			
D–H···A	d(D–H)	d(H···A)	$D(D \cdots A)$	\angle (D–H···A)
N2-H2C····O2 ⁱⁱ	0.91	2.11	3.013(13)	172
N3–H3C····O4 ⁱⁱⁱ	0.91	2.48	3.275(18)	147
O4–H4C···O2 ⁱⁱ	0.85	2.00	2.760(13)	149
O3–H3D…O4	0.85	1.90	2.652(13)	147

Table S4 Selected bond lengths (Å), angles (°) and hydrogen bonding for complex 4

Symmetry codes: i) 1/2-x,-1/2+y,1/2-z; ii) x,-1+y,z; iii) 1/2-x,1/2+y,1/2-z.

Complex 1

Complex 2

Complex 3

Complex 4