Structural diversity and properties of coordination polymers built from a semirigid tetradentenate carboxylic acid

Ling-Ling Qu, You-Long Zhu, Jun Zhang, Yi-Zhi Li, Hong-Bin Du*, Xiao-Zeng You State Key Laboratory of Coordination Chemistry and Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.

Figure S1. PXRD patterns for **1-3**: the as-synthesized (red), the simulated based on X-ray single-crystal data (black) and the activated sample (green).

Figure S2. CH_4 and CO_2 adsorption isotherms for 3 at 273 K.

1			
Zn1-01	2.168(3)	Zn1-02	1.964(3)
Zn1-03	2.117(3)	$Zn1-04^{iii}$	1.940(3)
Zn1-05	1.951(3)		
02-Zn1-01	92.47(13)	02-Zn1-03	86.90(12)
03-Zn1-01	172.84(13)	04 ⁱⁱⁱ -Zn1-01	88.75(12)
04 ⁱⁱⁱ -Zn1-02	135.10(11)	04 ⁱⁱⁱ -Zn1-03	86.68(12)
04^{iii} –Zn1–05	129.96(12)	05-Zn1-01	91.50(12)
05-Zn1-02	94.89(12)	05-Zn1-03	95.66(13)
2			
Co1-09	2.040(2)	Co1-010	2.414(2)
Co1-011	2.014(3)	Col-OlW	2.096(3)
$Co1-O1W^{ii}$	2.302(3)	Col-O2W	2.458(6)
09-Co1-01W	135.02(10)	$09\text{-}Co1\text{-}01\texttt{W}^{\text{ii}}$	87.26(10)
011-Co1-09	90.47(11)	011-Co1-01W	129.06(10)
$011Co101\texttt{W}^{\text{ii}}$	87.77(10)	$01 \texttt{W-Co1-O1W}^{\texttt{ii}}$	75.55(11)
3			
Cd1-01	2.243(4)	Cd1-07 ^v	2.315(3)
$Cd1-010^{iii}$	2.285(4)	$Cd2-02^{vii}$	2.186(4)
$Cd2-03^{viii}$	2.301(4)	$Cd2-04^{viii}$	2.381(4)
Cd2-07	2.326(3)	Cd2-08	2.493(4)
$Cd2-09^{ix}$	2.310(4)	$Cd2-010^{ix}$	2.645(4)
$01 - Cd1 - 01^{ii}$	179.999(1)	$01 - Cd1 - 07^{v}$	90.08(13)
$01 - Cd1 - 07^{vi}$	89.92(13)	$01 - Cd1 - 010^{iii}$	91.26(14)
$01 - Cd1 - 010^{iv}$	88.74(14)	010^{iii} -Cd1-010 iv	180.000(1)
010^{iii} -Cd1-07 ^v	77.22(14)	010^{iv} -Cd1-07 v	102.78(14)

Table S1. Selected bond distances (Å) and angles (deg) for 1-3

02^{vii} -Cd2-03 vii	154.23(14)	02^{vii} -Cd2-04 vii	98.22(13)
02^{vii} -Cd2-07	100.22(14)	02 ^{vii} -Cd2-08	88.31(14)
02^{vii} -Cd2-09 ^{ix}	95.53(14)	02^{vii} -Cd2-010 ^{ix}	99.11(14)
03^{viii} -Cd2-O4 viii	56.06(13)	03 ^{viii} -Cd2-07	98.59(13)
03 ^{viii} -Cd2-08	88.88(13)	03^{viii} -Cd2-09 $^{\text{ix}}$	89.31(13)
03^{viii} -Cd2-010 ^{ix}	103.76(13)	04 ^{viii} -Cd2-08	87.57(12)
04^{viii} -Cd2-010 ^{ix}	144.60(13)	$07\text{-}Cd2\text{-}04^{\text{viii}}$	135.78(12)
07-Cd2-08	53.43(12)	$07 - Cd2 - 010^{ix}$	70.20(13)
$08-Cd2-010^{ix}$	123.51(12)	09^{ix} -Cd2-O4 ^{viii}	95.68(13)
09^{ix} -Cd2-07	121.86(13)	09 ^{ix} -Cd2-08	174.56(13)
09^{ix} -Cd2-010 ^{ix}	52.10(13)		

Symmetry transformations used to generate equivalent atoms: For 1: i, -x+1, -y+1, -z; iii, -x+1, -y+1, -z+1. For 2: ii, -x+2, -y+2, -z+2. For 3: i, x, y-1, z-1; ii, -x+1, -y+1, -z-1; iii, x-1, y, z-1; iv, -x+2, -y+1, -z; v, x, y, z-1; vi, -x+1, -y+1, -z; vii, x, y, z+1; viii, x, y+1, z+1; ix, x-1, y, z.

D-HA	dDA	dHA	∠D–H…A
1			
O3–H3A…O8	2.691	1.79	154
О9-Н9СО4	2.679	1.76	160
O12-H12DO8	3.087	2.21	151
2			
O1W-H1XO3	2.722	1.93	155
O1W-H1YO2	2.708	1.88	165
O2W-H2YO9	3.248	2.57	137
O4–H4C…O8	3.213	2.55	126
O8–H8AO13	2.614	1.69	160
O14-H14CO7	2.598	1.84	134
C3-H3O4W	3.279	2.36	170
C22-H22O1	3.450	2.6	152
С33-Н33АО6	3.532	2.59	163

Table S2. Hydrogen-Bonding Geometries (Å, deg) for 1 and 2