#### **Supporting Information**

# Synthesis of isoreticular CAU-1 compounds: Effects of linker and heating methods on the kinetics of the synthesis

Tim Ahnfeldt, Norbert Stock

## Comparison of the EDXRD and the ADXD measurement

The EDXRD patterns of CAU-1-NH<sub>2</sub> were recorded using a nitrogen-cooled germanium solid-state detector positioned at approximately  $1.90^{\circ}$  2theta. The detector contains 2048 channels, which recording the data in an energy range of 6-57 keV. The beam is collimated to a dimension of  $20\mu m \times 20\mu m$  by wolfram-collimators. The d-spacing is given by the equation:

#### $E = 6.199/(d \sin \Theta)$

The energy calibration of the detector was performed using a glass containing a series of heavy elements with well separated fluorescence lines. The angle of the detector in the conventional and MW set-up, were calibrated using the set of Bragg peaks measured from a pre-made sample of CAU-1-NH<sub>2</sub>. A comparison of an EDXRD with an ADXD measurement is given in Figure S1.

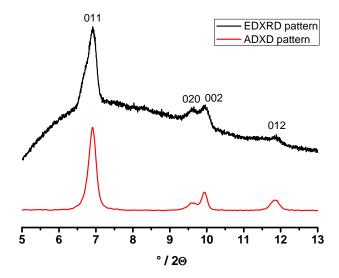



Figure S1: Comparison of ADXD data recorded from a dry sample of CAU-1-NH<sub>2</sub> synthesised at 140 °C using MW-assisted heating (bottom) and the corresponding EDXRD measurement during in-situ crystallisation study (top).

## **Preferred orientation**

To exclude the presence of preferred orientation the 011, 020, 002 and 012 Bragg reflections of the EDXRD measurements were used to calculate the extent of crystallization ( $\alpha$ ) (conventional synthesis of CAU-1-NH<sub>2</sub> at 145 °C). The corresponding curves  $\alpha$ (t) are shown in Figure 2. Since superimposable curves are obtained the presence of preferred orientation can be excluded.

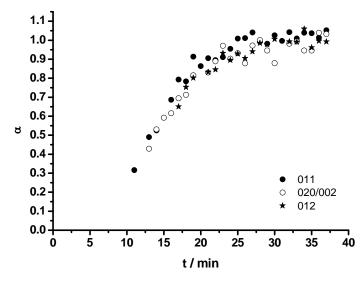



Figure S2. Plots of extent of crystallization ( $\alpha$ ) vs. reaction time (t) obtained by integration of the 011, 020, 002 and 012 Bragg peaks during the conventional synthesis of CAU-1-NH<sub>2</sub> at 145 °C. The areas of the 020 and 002 Bragg peaks were treated as a single peak due to a nearly complete overlap.

## Determination of t<sub>0</sub>

The parameter  $t_0$ , which is the time until the first crystallites are observed in the EDXRD spectra, is one of the key parameter for the kinetic modelling using the Avrami-Eroféev expression. Therefore, the determination of  $t_0$  was done very carefully for each measurement. As an example the determination of  $t_0$  is shown for the microwave-assisted synthesis of CAU-1-NH<sub>2</sub> at 125 °C. The data were accumulated in 1 min intervals. Between a reaction time of 12 min and 14 min the first product peaks appears in the EDXRD spectra (Figure S3, top) at ~23 keV. Due to the low intensity of the Bragg peaks at the beginning of the reaction, the exact time of  $t_0$  was often difficult to determine. Hence, in addition contour plots of the EDXRD spectra were calculated to verify the estimated  $t_0$  values (Figure S3, bottom). In good agreement a time of 13 min was determined for  $t_0$  for the MW-assisted synthesis of CAU-1-NH<sub>2</sub> at 125 °C using both methods.

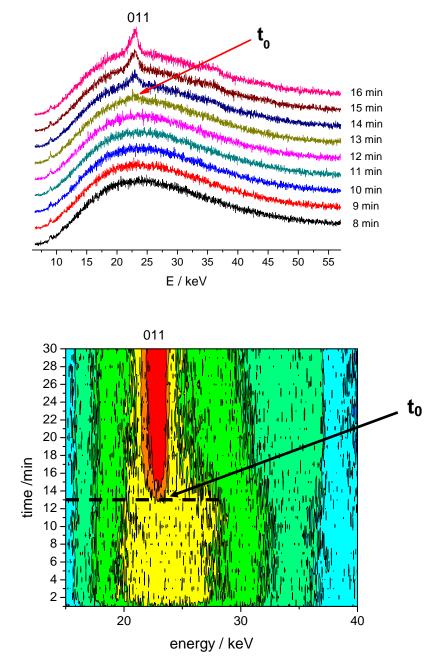



Figure S3. Plots of the EDXRD spectra (top) and the contour plot (bottom) of the MW-assisted synthesis of CAU-1-NH<sub>2</sub> to determine  $t_0$ . For both methods the 011 Bragg Peak occurs at a reaction time of 13 min at ~23 keV.

# **Dynamic light scattering**

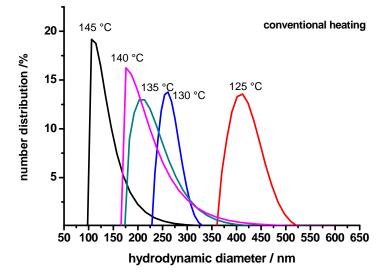



Figure S2: Differential number distribution curves of the hydrodynamic diameters of CAU-1 particles synthesized by conventional electrical heating as determined by dynamic light scattering measurements.

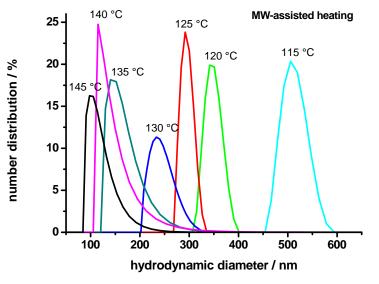



Figure S3: Differential number distribution curves of the hydrodynamic diameters of CAU-1 particles synthesized by MW-assisted heating as determined by dynamic light scattering measurements.