Electronic supplementary information

Synthesis of Hexagonal-symmetry α-Iron Oxyhydroxide Crystals Using Reduced Graphene Oxide as Surfactants and Their Li Storage Properties

Cuimiao Zhang^{a,b}, Jixin Zhu^a, Xianhong Rui^{a,b}, Jing Chen^a, Daohao Sim^a, Wenhui Shi^a, Huey Hoon Hng^a, Tuti Mariana Lim^{b,c}* and Qingyu Yan^{a,d,e}*

^a School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

^b School of Civil & Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

^c School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 599489, Singapore

^d Energy Research Institute, Nanyang Technological University, 637459, Singapore

^e TUM CREATE Centre for Electromobility, Nanyang Technological University, 637459, Singapore

Fig. S1

Fig. S1 EDX (a) and elements analysis results (b) of the as-prepared α -FeOOH/rGO sample at 180 °C for 24 hours with concentration of 0.0143 M Fe³⁺.

Fig. S2

Fig. S2 Raman spectra of the graphene oxide (a) and as-prepared α -FeOOH/rGO (b).

Fig. S3 XRD pattern (a) and SEM image (b) of as-synthesized FeOOH without GO during the synthetic process. The standard data of FeOOH (JCPDS 81-0464 and 34-1266) are also plotted as reference.

Fig. S4

Fig. S4 Schematic diagram of α -FeOOH hexagonal structures with different crystal planes.

Fig. S5

Fig. S5 The coulombic efficiency of hexagonal-disk α -FeOOH/rGO electrode at a current density of 100 mA/g with a voltage window of 0.005–3.0 V.

Fig. S6

Fig. S6 Cycling performance of pure FeOOH electrode at a current density of 100

mA/g.

Fig. S7

Fig. S7 (a) Charge-Discharge voltage profiles of hexapod α -FeOOH/rGO sample for the first and second cycles at a current density of 100 mA/g. (b) Cycling performance of hexapod α -FeOOH/rGO sample at the current density of 100 mA/g.