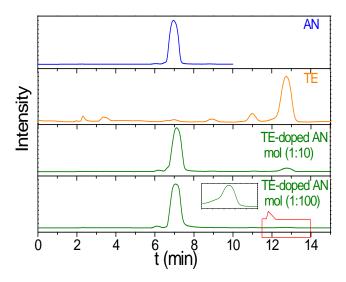
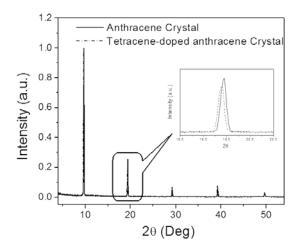
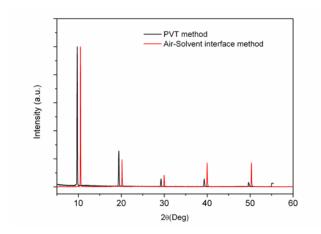
Supporting Information

Large Organic Single Crystal sheets Grown at the Gas-Liquid and Gas-Liquid-Solid Interface

Table S1. The polarity of some common solvents

Solvent	Molecular Formula	Polarity
Petroleum ether		0.01
Hexane	n-C ₆ H ₁₂	0.06
Cyclohexane	c-C ₆ H ₁₂	0.1
Carbon tetrachloride	CCl ₄	1.6
Toluene	C_7H_8	2.4
Dichloromethane	CH_2Cl_2	3.4
Tetrahydrofuran	C_4H_8O	4.2
Ethyl acetate	CH ₃ COOCH ₂ CH ₃	4.3
Chloroform	CHCl ₃	4.4
Acetone	CH₃COCH₃	5.4
Methanol	CH₃OH	6.6
Water	H_2O	10.2

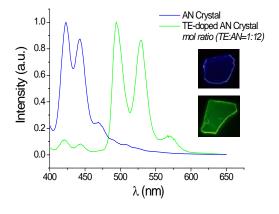

Figure S1. Chromatography was used to determine the respective content of different components in the mixture. For the two components a and b, the mass ratio of a to b could be estimated according to the following formula: $\frac{m_a}{m_b} = \frac{A_a \times f_a}{A_b \times f_b}$, where f is the correction factor and A is the integral area of the peak. The value of f_a/f_b can be estimated through the chromatograph if the mass ratio of component a to b in the mixture is known. Then, the mass ratio of the two components in the doped crystal could be determined according to the ratio of the integral areas of their peaks in the chromatograph. From this calculation, we have determined that the molar ratio in our TE-doped AN crystals is TE:AN=1:90.

Figure S2. X-ray diffraction pattern of AN crystal and TE-doped AN crystal obtained by PVT method

Figure S3. X-ray diffraction pattern of AN crystals obtained by PVT method and air-solvent interface method, respectively.

Figure S4. Fluorescence spectrum of AN single crystal and TE-doped AN crystal obtained by PVT method



Figure S5. A schematic representation of drop-casting method

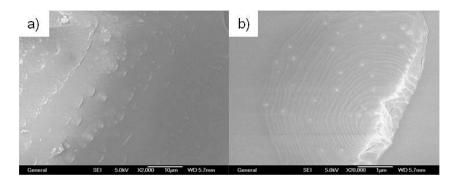


Figure S6. SEM images of an AN single crystal grown on a silicon substrate.

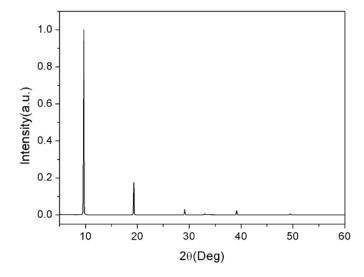


Figure S7. X-ray diffraction pattern of an AN crystal grown on a silicon substrate.