Strength from weakness: Exploitation of CH...N hydrogen bond for engineering waves in crystals

Kota Shivakumar[†], Adiyala Vidyasagar[†], Andra Naidu, Rajesh G. Gonnade, and Kana M. Sureshan*

S. No	Index	Page
1	Synthesis of 2-azido-3-cyanoquinoline (1)	S3
2	Synthesis of 3-cyano-2-methoxyquinoline (2)	S3
3	Synthesis of 3-cyano-2-thiophenylquinoline (3)	S4
4	Synthesis of 3-formyl-2-p-toluyloxyquinoline (4)	S4
5	Synthesis of 3-formyl-2-thiophenylquinoline (5)	S5
6	Determination of wavelength, amplitude and interplanar distance	S5
7	Table S1: Non-covalent interactions in 1	S6
8	Table S2: Non-covalent interactions in 2	S6
9	Figure S1: Stacking in 1	S7
10	Figure S2: concentration dependent ¹ H NMR of 2	S7
11	Table S3: Non-covalent interactions in 3	S8
12	Table S4: Non-covalent interactions in 4	S8
13	Table S5: Non-covalent interactions in 5	S9
14	Figure S3: Geometric parameters used for CSD search	S9
15	Figure S4: Layer packing in the quinolines obtained through CSD	S10
	search	
16	¹ H NMR of compound 1	S11
17	COSY of compound 1	S12
18	COSY of compound 1 (zoom)	S13
19	13 C NMR of compound 1	S14
20	HMQC of compound 1	S15
21	HMQC of compound 1 (zoom)	S16
22	HRMS of compound 1	S17
23	¹ H NMR of compound 2	S18
24	¹ H NMR of compound 2 (zoom)	S19
25	COSY of compound 2	S20
26	COSY of compound 2 (zoom)	S21
27	13 C NMR of compound 2	S22
28	HMQC of compound 2	S23
29	HMQC of compound 2 (zoom)	S24
30	HRMS of compound 2	S25
31	¹ H S NMR of compound 3	S26
32	¹ H NMR of compound 3 (zoom)	S27
33	COSY of compound 3	S28
34	COSY of compound 3 (zoom)	S29

35	13 C NMR of compound 3	S30
36	HMQC of compound 3	S31
37	HMQC of compound 3 (zoom)	S32
38	HRMS of compound 3	S33
39	¹ H NMR of compound 4	S34
40	¹ H NMR of compound 4 (zoom)	S35
41	COSY of compound 4	S36
42	COSY of compound 4 (zoom)	S37
43	¹³ C NMR of compound 4	S38
44	HMQC of compound 4	S39
45	HMQC of compound 4 (zoom)	S40
46	HRMS of compound 4	S41
47	¹ H NMR of compound 5	S42
48	¹ H NMR of compound 5 (zoom)	S43
49	COSY of compound 5	S44
50	COSY of compound 5 (zoom)	S45
51	¹³ C NMR of compound 5	S46
52	HMQC of compound 5	S47
53	HMQC of compound 5 (zoom)	S48
54	References	S48

Synthesis of 2-azido-3-cyanoquinoline (1)

A mixture of 2-chloro-3-cyanoquinolineⁱ (1.88 g, 9.973 mmol) and sodium azide (0.65 g, 10 mmol) in DMF (20 mL) was heated at 100 °C for 5 h. The mixture was then cooled to rt and poured into ice-water. The resultant solid was filtered, washed with water and dried to obtain crude **1**. The crude product thus obtained was recrystallized from chloroform / methanol to get pure **1** (1.69 g, 87%), mp 250 °C (decomp.), IR (KBr): v_{max} /cm⁻¹ 2999, 2260, 2226, 2217, 1619; ¹H NMR (300 MHz, DMSO): δ 9.10 (s, 1H, *H*-4), 8.60 (d, 1H, *J* = 8.1Hz, *H*-5), 8.22 (d, 1H, *J* = 8.1 Hz, *H*-8), 8.08 (m,1H, *H*-6), 7.85 (m,1H, *H*-7); ¹³C NMR (100 MHz, CDCl₃): δ 102.4, 119.2(*C*-5), 121.7, 121.8, 128.0(*C*-7), 134.1(*C*-8), 136.1, 136.6(*C*-6), 140.0, 148.5(*C*-4), 148.6, 150.96 ; HRMS calculated for (M+H)⁺ (C₁₀H₆N₅)⁺ :196.0545, Found (ES⁺):196.0612 **Synthesis of 3-cyano-2-methoxyquinoline (2)**

A mixture of 2-chloro-3-cyanoquinoline (1.88 g, 9.973 mmol) and K₂CO₃ (1.38 g, 10 mmol) in methanol (20 mL) was refluxed for 6 h. Then half of the Methanol was distilled off and the mixture was cooled to rt, poured into ice-water, and then neutralized with few drops of acetic acid. The resultant solid was filtered, washed with water and dried to obtain crude **2**. The product was further purified by recrystallization from ethyl acetate to yield white solid (1.83g, 85%), mp 112-114 °C, IR(KBr): v_{max}/cm^{-1} 3033, 3000, 2955, 2908, 2217, 1619 ; ¹H NMR (500 MHz, CDCl₃) : δ 8.33 (s, 1H, *H*-4), 7.81-7.71 (m, 1H, *H*-5), 7.71-7.68 (m, 2H, *H*-6, *H*-8), 7.41-7.38 (m, 1H, *H*-7), 4.09 (s, 3H, -*OCH₃*) ; ¹³C NMR (100 MHz, CDCl₃): δ 54.4(-*CH₃*), 98.4, 115.3, 123.2, 125.5(*C*-4), 127.6(*C*-5), 128.0(*C*-6 or *C*-8), 132.8(*C*-6 or *C*-8), 145.3(*C*-4), 147.6, 159.7; HRMS calculated for [M+H]⁺ (C₁₁H₈N₂O)⁺: 185.1940, Found (ES⁺): 185.1964

Synthesis of 3-cyano-2-thiophenylquinoline (3)

Sodium metal (0.23 g, 10 mmol) was added to t-butanol (20 mL) at rt in small portions and the mixture stirred well until a clear solution was formed. To this solution was added a mixture of 2-chloro-3-cyanoquinoline (1.88 g, 10 mmol) and thiophenol (1.03 mL, 10 mmol). The resulting mixture was refluxed for 4 h. The mixture was then cooled to room temperature. The yellow solid separated out which was filtered, washed with *t*-butanol (2×5 mL) and dried to obtain crude **3**. The product was further purified by recrystallization from ethylacetate. (2.35 g, 90%), mp 138 °C. IR (KBr): v_{max} / cm⁻¹ 3059, 2232, 1580; ¹H NMR (400 MHz, CDCl₃): δ 8.40 (s, 1H, *H*-4), 7.78 (m, 3H, *Ar*-*H*), 7.69-7.62 (m, 2H, *Ar*-*H*), 7.53-7.45 (m, 4H, *Ar*-*H*). ¹³C NMR (100 MHz, CDCl₃): δ 105.9, 115.7, 124.2, 127.1, 127.9, 128.5, 128.8, 129.1, 129.3, 132.8, 135.2, 143.0 (*C*-*4*), 148.6, 158.4; HRMS calcd. for [M+H]⁺ (C₁₆H₁₁N₂S)⁺: 263.0564. Found (ES⁺): 263.0651

Synthesis of 3-formyl-2-p-toluyloxyquinoline (4)

A mixture of 2-chloro-3-formyl quinolineⁱⁱ (1.91 g, 10 mmol), 4-methyl phenol (1.08 g, 10 mmol), K₂CO₃ (1.38 g, 10 mmol) and TBAB (0.3 g) in DMF (15 mL) was heated at 100 °C for 9 h. The mixture was then cooled to rt, poured into ice water and neutralized with acetic acid. The separated solid was filtered, washed with water and dried to obtain crude **4**. The product was further purified by recrystallization from ethylacetate to obtain as an yellow solid (1.49 g, 92%), mp 138 °C. IR (KBr): v_{max} / cm⁻¹ 3349, 3034, 2886, 1692; ¹H NMR (400 MHz, CDCl₃): δ 10.65 (s, 1H, *-CHO*), 8.73 (s, 1H, *H*-4), 7.90 (d, 1H, *J* = 8 Hz, *H*-5), 7.76-7.67 (m, 2H, *H*-8, *H*-7), 7.47-

7.43 (m, 1H, *H*-6), 7.27-7.20 (m, 4H, Ar-*H*), 2.41 (s, 3H, *Ar-CH*₃); ¹³C NMR (100 MHz, CDCl₃): δ 20.9(*Ar-CH*₃), 120.2(*toulyl*), 121.5, 125.1,(*C*-8) 125.6(*C*-6), 127.8(*C*-5), 129.6, 130.0(*toulyl*), 132.6(*C*-7), 134.7, 140.4(*C*-4), 148.6, 150.7, 160.6, 189.1(-*CHO*); HRMS calcd. for [M+H]⁺ (C₁₇H₁₄NO₂)⁺: 264.1025. Found (ES⁺): 264.1026

Synthesis of 3-formyl-2-thiophenylquinoline (5)

Sodium metal (0.23 g, 10 mmol) was added to t-butanol (20 mL) in small lots at rt and was stirred well until a clear solution was formed. To this solution, 2-chloro-3-formylquinoline (1.91 g, 10 mmol) and thiophenol (1.10 g, 10 mmol) were added and the mixture was refluxed for 4 h. The yellow precipitate obtained upon cooling to rt was filtered, washed with *t*-butanol (2×5 mL) and dried to obtain crude **5**. The product was further purified by recrystallization from EtOAc to get pale yellow solid.(1.48 g, 90%); mp 137-138 °C, IR (KBr): v_{max} / cm^{-1} 3043, 2844, 1981, 1695. ¹H NMR (400 MHz, CDCl₃): δ 10.28 (s, 1H, *-CHO*), 8.55(s, 1H, *H*-4), 7.87 (d, 1H, *J* = 8 Hz, *H*-5), 7.71(m, 2H, *H*-7, *Ar*-*H*), 7.62-7.60(m, 2H, *Ar*-*H*), 7.51-7.48(m, 1H, *H*-6), 7.45-7.43(m, 3H, *H*-8, *Ar*-*H*) ¹³C NMR (100 MHz, CDCl₃): δ 125.2, 126.6(*C*-6), 127.2, 128.7, 128.8, 129.0(*C*-5), 129.1, 130.0, 132.9(*C*-7), 135.1, 142.3(*C*-4), 149.5, 158.8, 190.1(*-CHO*)

Determination of wavelength, amplitude and interplanar distance

A plane through the identical atoms on the crests of a wave is drawn. Similarly a plane passing through the identical atoms on the trough was also drawn. The distance between these two planes is taken as the amplitude. The linear distance between identical atoms on two consecutive crests (or troughs) in a layer is taken as the wave length. A plane passing through the quinoline ring carbons is drawn for a layer. The distance between two such adjacent planes (layers) is taken as the interplanar distance.

	Туре	Interaction (D-HA)	HA (Å)	Angle D-HA (°)	Symmetry operation
1	CHN	C8-H8N5	2.679(3)	133.1(2)	1+x, y, 1+z
2		C4-H4N3	2.798(3)	164.2(2)	$1-x, \frac{1}{2}+y, \frac{1}{2}-z$
3		C4-H4N2	2.574(3)	155.8(2)	$1-x, \frac{1}{2}+y, \frac{1}{2}-z$
4		C5-H5N2	2.937(3)	143.0(2)	$1-x, \frac{1}{2}+y, \frac{1}{2}-z$
5		С6-Н6N4	2.772(3)	129.8(3)	2-x, ½+y, 1.5-z
6		С7-Н7N3	2.782(3)	147.7(2)	2-x, ½+y, 1.5-z
7		C4-H4N5	2.874(4)	114.5(2)	1-x, 2-y, -z
8		C5-H5N5	2.822(4)	133.4(2)	$1-x, \frac{1}{2}+y, \frac{1}{2}-z$
9		С7-Н7N4	2.951(3)	121.8(2)	2-x, ½+y, 1.5-z
10	ππ	Quin _p Quin _p	3.42		1-x, 2-y, 1-z
11		Quin _p Quin _p	3.44		2-x, 2-y, 1-z

Table S1: Non-covalent interactions in 1

Table S2: Non-covalent interactions in 2

	Туре	Interaction (D-HA)	HA (Å)	Angle D-	Symmetry
				HA (°)	operation
1	СНО	С12-Н12ВО1	2.606(3)	152.9(3)	2-x, -y, 2-z
2	CHN	С6-Н6N1	2.743(4)	170.9(4)	$-1+x$, $\frac{1}{2}-y$, $-\frac{1}{2}+z$
3		C12-H12A-N1	2.838(4)	135.5(3)	1+x, y, z
4		C5-H5N2	3.021(6)	149.1(3)	-x, -y, 1-z
5		C4-H4N2	3.009(6)	122.7(3)	1-x, -y, 1-z
6	СНπ	С8-Н8С5 (СНл)	2.994(5)	130.9(3)	$x, \frac{1}{2} - y, \frac{1}{2} + z$
7		С12-Н12АС6 (СНπ)	3.051(6)	126.9(3)	$1+x, \frac{1}{2}-y, \frac{1}{2}+z$
8	ππ	$Quin_pQuin_p (\pi\pi)$	3.514		1+x,y,z

9 Quin _p Quin _p (π π) 3.514 -1+x, y, z	
--	--

Figure S1: Slipped parallel stacking of individual molecules of **2** in the direction "a". This arrangement is further reinforced by the C12-H12A...N1 interaction (shown as blue dotted lines). This interaction makes a spiral/helical arrangement of N1-C2-O1-C12-H12A unit along the direction "a" (shown as space fill model in the right panel).

Figure S2: Concentration dependent ¹H NMR of **2** in CD₃CN suggested self assembly in the solution state also. As the concentration increased, the proton signals shifted up-field probably due to the anisotropic shielding effect suggesting aggregation through π - π stacking similar to the solid state arrangement.

	Туре	Interaction (D-HA)	HA (Å)	Angle D-HA (°)	Symmetry operation
1	C-HN	C17-H17N1	2.84(3)	147.0(3)	1+x,y,z
2		C4-H4N2	2.94(3)	115.2(2)	2-x, 1-y, 2-z
3		C4-H4N2	2.58(3)	146.3(2)	3-x, 1-y, 2-z
4		C14-H14N2	2.64(3)	143.8(3)	$-1+x$, $\frac{1}{2}-y$, $-\frac{1}{2}+z$
5	С-Нπ	С5-Н5С14	2.95(3)	163.3(3)	2-x, ½+y, 1.5-z
6		С8-Н8С8	2.87(3)	120.6(3)	1-x, 1-y, 1-z
7		С7-Н7С16	3.02(3)	132.4(2)	1-x, 1-y, 1-z
8		С16-Н16С6	3.05(3)	162.4(3)	2-x, 1-y, 1-z
9	ππ	Quin _p Quin _p	3.45		-1+x, y, z
10		$Thioph_{p}Thioph_{p}$	3.37		-1+x, y, z
11	C-HS	C15-H15S1	3.16(3)	145.2(2)	$x, \frac{1}{2}-y, -\frac{1}{2}+z$

Table S3: Non-covalent interactions in 3

Table S4: Non-covalent interactions in 4

	Туре	Interaction (D-HA)	HA (Å)	Angle D-HA (°)	Symmetry operation
1	С-НО	С5-Н5О2	2.648(2)	141.5(1)	2-x,-y,-z
2		С17-Н17О2	3.041(2)	146.0(2)	2-x, 1-y, -z
3		С11-Н11О2	2.647(2)	144.3(2)	3-x, 1-y, -z
4	C-HN	C18-H18AN1	3.042(2)	146.9(2)	2-x, 1-y, 1-z
5	С-Нπ	С5-Н5С5	3.032(3)	120.9(1)	1-x, -y, -z
6		С17-Н17С6	3.018(3)	133.4(2)	x, 1+y, z
7		С16-Н16С7	3.060(3)	148.2(2)	x, 1+y, z
8		C18-H18AC13	3.055(3)	149.0(2)	2-x, 1-y, 1-z
9		С7-Н7С16	2.917(3)	155.3(2)	-1+x, -1+y, z

10		С6-Н6С17	3.136(3)	126.8(2)	-1+x, -1+y, z
11	ππ	Quin _p Quin _p	3.44		-1+x, y, z
12		Tol _p Tol _p	3.58		-1+x, y, z

Table S5: Non-covalent interactions in 5

	Туре	Interaction (D-HA)	HA (Å)	Angle D-HA (°)	Symmetry operation
1	С-НО	С16-Н16О1	2.941(2)	133.8(2)	$-\frac{1}{2}+x, -\frac{1}{2}+y, -1+z$
2		С6-Н6О1	2.545(2)	144.0(2)	$-\frac{1}{2}+x$, $\frac{1}{2}+y$, $-1+z$
3		С17-Н17О1	2.895(2)	119.9(2)	$-\frac{1}{2}+x$, 1.5-y, $-\frac{1}{2}+z$
4	C-HS	C16-H16S1	3.256(2)	131.9(2)	$-\frac{1}{2}+x$, 1.5-y, $-\frac{1}{2}+z$
5	СНπ	С15-Н15С17	2.994(2)	168.3(3)	x, 1-y, -1/2+z
6		C14-H14C8	3.118(2)	150.9(3)	¹ / ₂ + _X , - ¹ / ₂ + _y , z
7		С8-Н8С13	2.815(2)	143.2(2)	$-\frac{1}{2}+x$, 1.5-y, $-\frac{1}{2}+z$
8		С5-Н5С15	3.027(2)	151.1(2)	x, 2-y, ½+z
9		С4-Н4С13	2.862(2)	160.3(2)	x, 2-y, ½+z
10		C4-H4C14	2.904(2)	169.5(2)	x, 2-y, ½+z
11		$C4-H4C_{g(Thioph)}$	2.89	149.9	x, 2-y, ½+z
12		С11-Н11С13	3.00(4)	151.3(3)	x, 2-y, ½+z

Angle between PL1 and PL2 $\,$ 0- 10 $^{\circ}$

Figure S3: Geometric parameters used for CSD search

Figure S4: Layer packing in the quinolines obtained through CSD search

¹H NMR of compound **1**

COSY of compound 1

COSY of compound 1 (zoom)

¹³C NMR of compound **1**

KMS-D-Azide C13CPD CDC13 E:\ IISER 1150.96 148.63 148.65 140.05 136.65 136.65 134.12 1 Current Data Parameters NAME Sagar EXPNO 64 PROCNO 1 CN . N₃ NUC1 P1 PLW1 SF01 CPDPRG2 NUC2 PCPD2 PLW2 PLW12 PLW13 SF02 F2 - Processing parameters SI 32768 SF 125.7829340 MHz WDW EM SSB 0 100 Hz 1.00 Hz GB PC 0 1.40 200 0 ppm 180 160 140 120 100 80 60 40 20

HMQC of compound 1

HMQC of compound 1 (zoom)

HRMS of compound 1

¹H NMR of compound **2**

KMS-D-Het PROTON CDC13 E:\ IISER

¹H NMR of compound **2** (zoom)

COSY of compound 2:

COSY of compound 2 (zoom)

¹³C NMR of compound **2**

\

HMQC of compound 2

1

HMQC of compound 2 (zoom)

HRMS of compound 2

1 H NMR of compound **3**

¹H NMR of compound **3** (zoom)

COSY of compound 3

COSY of compound 3 (zoom)

¹³C NMR of compound **3**

HMQC of compound 3

HMQC of compound 3 (zoom)

HRMS of compound 3

¹H NMR of compound **4**

¹H NMR of compound **4** (zoom)

COSY of compound 4

COSY of compound 4 (zoom)

¹³C NMR of compound **4**

HMQC of compound 4

KMS-D-OTL HMQC CDCl3 E:\ IISER

HMQC of compound 4

Maximum:		5.0	10.0	20.0			
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula	
264.1026	264.1025	0.1	0.4	11.5	2.9	C17 H14 N 02	

¹H NMR OF COMPOUND **5**

COSY of compound 5

COSY of compound 5 (zoom)

¹³C NMR OF COMPOUND **5**

KMS-D-CHS-PH C13CPD CDCl3 E:\ IISER

HMQC of compound 5

References:

- i. S. Upadhyay, A. Chandar, R. M. Sing, Indian J. Chem., 2009, 48B, 152.
- ii. O. Meth-Chon, B. Narine, B. Tarnowski, J. Chem. Soc., Perkin Trans. I, 1981,1520.