Formate modulated solvothermal synthesis of
 ZIF-8 investigated using time-resolved in situ

X-ray diffraction and scanning electron

microscopy

Janosch Cravillon, ${ }^{* a}$ Christian A. Schröder, ${ }^{a}$ Helge Bux, ${ }^{b}$ André Rothkirch, ${ }^{c}$ Jürgen Caro ${ }^{b}$ and Michael Wiebcke*a

${ }^{\text {a}}$ Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstr. 9, 30167 Hannover Germany; ${ }^{\mathrm{b}}$ Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany; ${ }^{\text {c }}$ Deutsches Elektronen-Synchrotron (DESY), Notkestr.

$$
\text { 85, } 22607 \text { Hamburg, Germany. }
$$

Powder XRD

Fig. S1 Powder XRD patterns taken from the final products obtained by the monitored syntheses for the composition $\mathrm{Zn} / \mathrm{Hmim} / \mathrm{NaHCO}_{2} / \mathrm{MeOH}=1: 2: 2: 333$ at different temperatures and for the varied compositions $\mathrm{Zn} / \mathrm{Hmim} / \mathrm{NaHCO}_{2} / \mathrm{MeOH}=1: 2: x: 333(0.5 \leq x \leq 4.0)$ at $T=130{ }^{\circ} \mathrm{C}$. A pattern simulated from crystal structure data is also shown.

Sharp-Hancock Plots

Fig. S2 Sharp-Hancock plots (a) for the composition $\mathrm{Zn} / \mathrm{Hmim} / \mathrm{NaHCO}_{2} / \mathrm{MeOH}=1: 2: 2: 333$ at different temperatures and (b) for the varied compositions $\mathrm{Zn} / \mathrm{Hmim} / \mathrm{NaHCO}_{2} / \mathrm{MeOH}=$ $1: 2: x: 333(0.5 \leq x \leq 4.0)$ at $T=130^{\circ} \mathrm{C}$.

Non-linear Avrami Erofe'ev Fits

\mathfrak{C}

$$
巳
$$

b

0

Fig. S3 Extent of crystallisation vs. time (black squares) for the composition $\mathrm{Zn} / \mathrm{Hmim} / \mathrm{NaHCO}_{2} / \mathrm{MeOH}=1: 2: 2: 333$ at different temperatures $\left[(\mathrm{a}) 140^{\circ} \mathrm{C}\right.$, (b) $135^{\circ} \mathrm{C}$, (c) $130{ }^{\circ} \mathrm{C}$, (d) $125{ }^{\circ} \mathrm{C}$ and (e) $120{ }^{\circ} \mathrm{C}$] and corresponding non-linear least-squares fits with the Avrami-Erofe'ev equation (red line).

Fig. S4 Extent of crystallisation vs. time (black squares) for the varied compositions $\mathrm{Zn} / \mathrm{Hmim} / \mathrm{NaHCO}_{2} / \mathrm{MeOH}=1: 2: x: 333$ [(a) $x=4.0$, (b) $x=3.0$, (c) $x=2.0$, (d) $x=1.0$ and (e) $x=0.5$] and corresponding non-linear least-squares fits with the Avrami-Erofe'ev equation (red line).

Arrhenius Plots

Fig. S5 Arrhenius plots for the temperature-dependent rate constants of the Sharp-Hancock anaylsis (black squares) and non-linear least-squares fitting with the Avrami-Erofe'ev equation (black circles).

Non-linear Gualtieri Fits

Fig. S6 Extent of crystallisation vs. time (black squares) for the composition $\mathrm{Zn} / \mathrm{Hmim} / \mathrm{NaHCO}_{2} / \mathrm{MeOH}=1: 2: 2: 333$ at different temperatures $\left[(\mathrm{a}) 140^{\circ} \mathrm{C}\right.$, (b) $135^{\circ} \mathrm{C}$, (c) $130{ }^{\circ} \mathrm{C}$, (d) $125^{\circ} \mathrm{C}$ and (e) $120^{\circ} \mathrm{C}$] and corresponding non-linear least-squares fits with the Gualtieri equation (red line) as well as probability curves of nucleation P_{N} (open circles).

Fig. S7 Extent of crystallisation vs. time (black squares) for the varied compositions $\mathrm{Zn} / \mathrm{Hmim} / \mathrm{NaHCO}_{2} / \mathrm{MeOH}=1: 2: x: 333$ [(a) $x=4.0$, (b) $x=3.0$, (c) $x=2.0$, (d) $x=1.0$ and (e) $x=0.5$] and corresponding non-linear least-squares fits with the Gualtieri equation (red line) as well as probability curves of nucleation P_{N} (open circles).

Final Maximum Crystal Size

Fig. S8 SEM micrographs showing typical crystals of maximum size as obtained by the monitored syntheses for the compositions $\mathrm{Zn} / \mathrm{Hmim} / \mathrm{NaHCO}_{2} / \mathrm{MeOH}=1: 2: x: 333[$ (a) $x=0.5$, (b) $x=1.0$, (c) $x=2.0$, (d) $x=3.0$ and (e) $x=4.0]$.

Table S1 Final maximum crystal sizes.

x	0.5	1.0	2.0	3.0	4.0
Crystal Size $/ \mu \mathrm{m}$	71	59	51	25	23

SEM Micrograph from Stirred Synthesis Solution

Fig. S9 SEM micrograph taken from solid material obtained from a stirred synthesis solution.

TG/DTA Analysis

Figure S10 TG (solid line) and DTA curves (dotted line) measured from a sample obtained by the optimised synthesis. Ramp: $5 \mathrm{~K} / \mathrm{min}$, flowing air (Netzsch Thermal Analyser STA 429).
The total mass loss (65%) agrees well with the calculated ones (64%) assuming decomposition of ZIF-8 $\left[\mathrm{Zn}(\mathrm{mim})_{2}\right]$ into solid hexagonal ZnO (as verified by XRD) and volatile species stemming from the organic ligand.

Nitrogen Sorption Isotherms

Figure S11 Nitrogen sorption isotherms at 77 K as linear-linear (top) and linear-log plots (bottom). Red and blue data correspond to the adsorption and desorption branches, respectively (Quantachrome Autosorb 1-MP).

The apparent specific surface area was determined by the Brunauer-Emmett-Teller (BET) method: $S_{\text {BET }}=1450 \mathrm{~m}^{2} / \mathrm{g}$.

