Supporting Information of

Two new Ln/Ag heterometallic-based conversion phosphor constructed by 1*H*-benzimidazole-5, 6-dicarboxylic acid

Fu Ding^{*a*}, Xiao Song^{*a*}, Bing Jiang^{*a*}, Philippe F. Smet^{*b*}, Dirk Poelman^{*b*}, Gang Xiong^{*a*}, Yong-Li Wu^{*a*}, En-Jun Gao^{*a*}, Francis Verpoort^{*c*}, Ya-Guang Sun^{*a**}

^aLaboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China ^bLumiLab, Department of Solid State Sciences, Ghent University, Ghent, 9000, Belgium

^cDepartment of Inorganic and Physical Chemistry, Ghent University, Ghent, 9000, Belgium

AUTHOR INFORMATION

Corresponding Author

*E-mail: yaguangsun@yahoo.com.cn

Fig. S1 The simulated and experimental PXRD patterns of **1** and **2**. the simulated (a); the experimental at 25° C (b), 80° C (c), 150° C (d), 250° C (e), 350° C (f)

Fig. S1 The TGA of 1 and 2

	comp	lex 1		
Ho(1)-O(2)#1	2.295(3)	O(2)#1-Ho(1)-O(3)#	174.67(12)	
Ho(1)-O(1)	2.341(3)	O(2)#1-Ho(1)-O(1)	133.67(13)	
Ho(1)-O(9)	2.478(3)	O(2)#1-Ho(1)-O(12)	143.63(12)	
Ho(1)-O(3)#1	2.306(3)	O(1)-Ho(1)-O(12)	79.21(3)	
Ho(1)-O(12)	2.362(3)	O(8)-Ho(1)-O(5)	149.70(12)	
Ho(1)-O(6)	2.562(3)	O(2)#1-Ho(1)-O(9)	71.37(12)	
Ho(1)-O(8)	2.337(3)	O(1)-Ho(1)-O(9)	147.65(13)	
Ho(1)-O(5)	2.370(3)	O(2)#1-Ho(1)-O(6)	70.02(11)	
Ag(1)-N(2)	2.185(4)	O(1)-Ho(1)-O(6)	68.52(11)	
Ag(1)-N(3)#1	2.157(4)	O(9)-Ho(1)-O(6)	116.00(10)	
Ag(1)-O(5)#2	2.695(4)	N(2)-Ag(1)-O(5)#2	95.03(14)	
O(2)#1-Ho(1)-O(8)	96.67(12)	O(3)#1-Ho(1)-O(8)	77.70(12)	
O(3)#1-Ho(1)-O(1)	77.90(13)	O(8)-Ho(1)-O(1)	113.04(11)	
O(3)#1-Ho(1)-O(12)	136.94(12)	O(8)-Ho(1)-O(12)	78.49(12)	
O(2)#1-Ho(1)-O(5)	85.66(12)	O(3)#1-Ho(1)-O(5)	131.39(12)	
O(1)-Ho(1)-O(5)	85.32(10)	O(12)-Ho(1)-O(5)	81.88(12)	
O(3)#1-Ho(1)-O(9)	134.08(11)	O(8)-Ho(1)-O(9)	76.57(11)	
O(12)-Ho(1)-O(9)	72.47(12)	O(5)-Ho(1)-O(9)	75.63(11)	
O(3)#1-Ho(1)-O(6)	78.82(12)	O(8)-Ho(1)-O(6)	155.42(11)	
O(12)-Ho(1)-O(6)	124.59(11)	O(5)-Ho(1)-O(6)	52.61(11)	
N(3)#1-Ag(1)-N(2)	151.83(14)	N(3)#1-Ag(1)-O(5)#2	107.72(13)	
Complex 2				
Eu(1)-O(3)	2.395(10)	Eu(1)-O(5)	2.614(11)	
Eu(1)-O(23)	2.502(12)	Eu(1)-O(7)	2.479(10)	
Eu(1)-O(8)	2.501(10)	Eu(1)-O(18)	2.407(11)	
Eu(1)-O(12)	2.529(12)	Eu(1)-O(9)	2.433(10)	
Eu(1)-O(6)	2.467(10)	Ag(1)-N(1)	2.124(13)	
Ag(1)-N(4)#1	2.130(13)	Ag(1)-O(1)#2	2.695(4)	

Table S1 A summary of the selected bond distances (Å) and bond angles (°) for complex 1 and 2

O(3)-Eu(1)-O(8)	144.0(3)	O(18)-Eu(1)-O(8)	77.7(4)
O(9)-Eu(1)-O(8)	74.2(3)	O(18)-Eu(1)-O(7)	121.8(4)
O(6)-Eu(1)-O(8)	129.4(3)	O(6)-Eu(1)-O(7)	78.8(3)
O(9)-Eu(1)-O(7)	109.0(4)	O(12)-Eu(1)-O(5)	66.5(3)
N(1)-Ag(1)-N(4)#1	163.1(5)	O(3)-Eu(1)-O(23)	82.3(4)
O(23)-Eu(1)-O(5)	121.1(4)	O(3)-Eu(1)-O(18)	90.4(4)
O(3)-Eu(1)-O(9)	70.2(4)	O(18)-Eu(1)-O(9)	79.3(4)
O(3)-Eu(1)-O(6)	84.6(3)	O(18)-Eu(1)-O(6)	127.7(4)
O(9)-Eu(1)-O(6)	143.9(4)	O(3)-Eu(1)-O(7)	147.6(4)
O(7)-Eu(1)-O(8)	52.5(3)	O(8)-Eu(1)-O(5)	137.4(4)
O(18)-Eu(1)-O(23)	154.8(4)	O(9)-Eu(1)-O(23)	75.5(4)
O(6)-Eu(1)-O(23)	75.8(4)	O(7)-Eu(1)-O(23)	66.7(4)
O(8)-Eu(1)-O(23)	94.1(4)	O(3)-Eu(1)-O(12)	135.1(4)
O(18)-Eu(1)-O(12)	70.6(4)	O(9)-Eu(1)-O(12)	138.9(4)
O(6)-Eu(1)-O(12)	77.1(4)	O(7)-Eu(1)-O(12)	67.5(3)
O(8)-Eu(1)-O(12)	72.7(4)	O(23)-Eu(1)-O(12)	130.2(4)
O(3)-Eu(1)-O(5)	70.0(4)	O(18)-Eu(1)-O(5)	78.0(4)
O(9)-Eu(1)-O(5)	133.6(4)	O(6)-Eu(1)-O(5)	51.4(3)
O(7)-Eu(1)-O(5)	117.4(3)		