## ELECTRONIC SUPPLEMENTARY INFORMATION

# for

# Radicals organized by disk shaped aromatics – polymorphism and cocrystals that tune inter-electron exchange.

Handan Akpinar,<sup>a</sup> Joel T. Mague,<sup>b</sup> Miguel A. Novak,<sup>c,d</sup> Jonathan R. Friedman,<sup>e</sup> Paul M. Lahti<sup>\*a</sup>

<sup>a</sup>Department of Chemistry, University of Massachusetts, Amherst, MA 01003 USA
 <sup>b</sup>Department of Chemistry, Tulane University, New Orleans, LA 70118 USA
 <sup>c</sup>Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, 21945-970, Brazil
 <sup>d</sup>Visiting Scholar, University of Massachusetts, Amherst, MA 01003 USA
 <sup>e</sup>Department of Physics, Amherst College, Amherst, MA 01002 USA

| Figure S1. Pictures of crystals.                                                                                                          | Page  | <b>S</b> 1 |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| Experimental Procedures.                                                                                                                  | -     | S2         |
| Crystallographic study and analysis procedures.                                                                                           |       | <b>S</b> 3 |
| <b>Figure S2</b> . $C_6F_6$ contacts in (PyrNN) <sub>2</sub> · $C_6F_6$ co-crystal.                                                       |       | S4         |
| Figure S3. Magnetization versus field data for samples in this study.                                                                     |       | <b>S</b> 5 |
| <b>Figure S4</b> . Half-dimer model fit for $\alpha$ -PyrNN $\chi T$ vs T data at 1000 Oe (dc),                                           |       |            |
| no mean field, fitted paramagnetic fraction.*                                                                                             |       | S6         |
| <b>Figure S5</b> . Half-dimer model fits for $\alpha$ -PyrNN $\chi T$ vs T data at 1000 Oe (dc), fixed                                    |       |            |
| paramagnetic fraction having a mean field term.*                                                                                          |       | S6         |
| <b>Figure S6</b> . $\chi T$ vs T data for $\beta$ -PyrNN at 1000 Oe (dc), with fit to spin pairing model.*                                |       | S7         |
| <b>Figure S7</b> . $\chi T$ vs T data for $\alpha$ -PyrIN at 1000 Oe (dc), with fit to spin pairing model.*                               |       | <b>S</b> 8 |
| Figure S8. $\chi T$ vs T data (left, at 1000 Oe) and M vs H data (right, at 1.8 K) for PyrIN                                              |       | <b>S</b> 8 |
| crystallized from $C_6F_6$ .                                                                                                              |       |            |
| <b>Figure S9</b> . $\chi T$ vs T data with chain fitting for (PyrNN) <sub>2</sub> ·C <sub>6</sub> F <sub>6</sub> at 1000 Oe (dc).*        |       | <b>S</b> 9 |
| <b>Figure S10</b> . $\chi T$ vs T data with spin ladder fitting for (PyrNN) <sub>2</sub> ·C <sub>6</sub> F <sub>6</sub> at 1000 Oe (dc).* |       | S10        |
| Figure S11. $\chi T$ vs T data with 2-D square planar fitting for (PvrNN) <sub>2</sub> ·C <sub>6</sub> F <sub>6</sub> at 1000 Oe (d       | lc).* | S11        |
| Archival summaries of computational estimates of exchange for dyad models.                                                                | ,     | S12        |

\*Includes details of magnetic data fitting.

**Figure S1**. Pictures of crystals of PyrNN,  $(PyrNN)_2 \cdot C_6 F_6$ ,  $\alpha$ -PyrIN, PyrIN recrystallized from  $C_6 F_6$ ,  $\beta$ -PyrIN.



 $\alpha$ -PyrNN (1.6 mm long)



(PyrNN)<sub>2</sub>·C<sub>6</sub>F<sub>6</sub> (longest dimension 6 mm)



 $\beta$ -PyrNN (5 mm long)



 $\alpha$ -PyrIN (1.5 mm long)



 $\begin{array}{c} \mbox{Attempted PyrIN with $C_6F_6$} \\ \mbox{(2 mm long)} \end{array}$ 



 $\beta$ -PyrIN (blade) (3.5 mm long)



β-PyrIN (block) (longest dimension 3 mm)



 $\begin{array}{c} \mbox{Attempted PyrIN with $C_6F_6$} \\ \mbox{(5 mm long)} \end{array}$ 

Electronic Supplementary Material (ESI) for CrystEngComm This journal is The Royal Society of Chemistry 2011



**2,3-Bis(hydroxylamino)-2,3-dimethylbutane hydrogen sulfate.** This compound as prepared from 2nitropropane according to the procedure of Ovcharenko, V.; Fokin, S.; Rey, P. *Mol. Cryst. Liq. Cryst. Sect. A* **1999**, 334, 109.

**2-(1'-Pyrenyl)-4,4,5,5-tetramethyl-4,5-dihydro**-*1H*-imidazole-3-oxide-1-oxyl (PyrNN). Bis(hydroxylamino)-2,3-dimethylbutane hydrogen sulfate (1.069 g, 4.34 mmol) and pyrene-1-carbaldehyde (1.0 g, 4.34 mmol) were dissolved in 50 mL of methanol and 30 mL of chloroform. Triethylamine (0.438 g, 4.34 mmol) was added, and the mixture was heated at reflux for 48 h under nitrogen at 75-80 °C. The reaction was then allowed to cool. After evaporation under reduced pressure, the resulting yellow crude product (**PyrNNH3**) was dissolved in 120 mL of dichloromethane. The mixture was allowed to stir under nitrogen at 0-3 °C in an ice-bath for 15 min. To this mixture was added 0.2 M NaIO<sub>4</sub> (0.928 g, 4.34 mmol in 21.6 mL of H<sub>2</sub>O). A deep-blue color formed at once, after which the mixture was stirred for 10 min. Next, 100 mL of cold water was added to the mixture, and the organic layer rapidly extracted with dichloromethane. The combined organic layers were dried over anhydrous magnesium sulfate and the solvent removed by rotary evaporation. Chromatography on silica gel with ethyl acetate yielded **PyrNN** (0.610 g, 39%). Recrystallization from acetonitrile alone gave dark-blue needles, mp: 190-191 °C; this is the  $\beta$ -allotope. ESR (toluene, 9.647 GHz): 7.18 gauss (2 N). MS (FAB): found *m/z* = 357.2, calculated for C<sub>23</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub> *m/z* = 357.2.

**2-(1'-Pyrenyl)-4,4,5,5-tetramethyl-4,5-dihydro-***1H***-imidazole-1-oxyl (PyrIN)**. To a stirred solution of **PyrNN** (0.800 g, 2.24 mmol) in 160 mL of dichloromethane under nitrogen was added NaNO<sub>2</sub> (3.101 g, 44.80 mmol), then 12.3 mL of 0.1 M aq HCl solution. A color change was observed from deep-blue to orange. The reaction was stirred for 15 min, then 50 mL of water was added. The reaction was extracted with dichloromethane. The combined organic layers were dried over anhydrous magnesium sulfate and evaporated to dryness rotary evaporation. Chromatography on silica gel with ethyl acetate/hexane (1/1) as the eluent yielded PyrIN (0.540 g, 71 %), which could be recrystallized to give a mix of red-orange blades plus brick-like crystals from ethyl acetate/hexane solution, mp 150-151 °C; this is the  $\beta$ -allotrope. Recrystallization from layered chloroform under methylcyclohexane yielded clusters of dark red needles (mp 150-151 °C); this is the  $\alpha$ -allotope. ESR (toluene, 9.647 GHz),  $a_N = 8.85$ , 4.00 gauss. MS (FAB): found m/z = 341.2, calculated for  $C_{23}H_{21}N_2O$  m/z = 341.2.

**Co-crystallization of PyrNN with**  $C_6F_6$ **.** To a solution of **PyrNN** (0.055 g, 0.15 mmol) in 4 mL of dichloromethane was added 3 mL of  $C_6F_6$  (4.836 g, 25.99 mmol); the solvent was allowed slowly to evaporate at room temperature. The mass of the solid residue was checked; it yielded (**PyrNN**)<sub>2</sub>· $C_6F_6$  (0.069 g, 100 %) as wavy plate shaped, dark blue crystals, mp 193-195 °C for several determinations.

Attempted co-crystallization of PyrIN with  $C_6F_6$ . To a solution of Py-IN (0.0303 g, 0.09 mmol) in 3 mL of dichloromethane was added 2 mL of excess  $C_6F_6$  (3.224 g, 17.33 mmol); and let the solvent slowly evaporate at room temperature. The mass of the solid residue was checked; it equaled the mass of the originally input Pyr-IN (0.0303 g, 0.09 mmol) as salmon colored, irregular prisms, some with holes seen under the microscope, mp 150-151 °C, the same as the PyrIN material that was input. These crystals did not give analysis-quality x-ray diffraction.

# Crystallographic study and analysis procedures.

**General X-ray Diffraction Procedures:** For all structures, a suitable crystal was selected and affixed to the end of a Cryoloop<sup>TM</sup> with a drop of Paratone<sup>TM</sup> oil and placed in the cold nitrogen stream of the low temperature attachment of the Bruker-AXS Smart APEX CCD diffractometer. Full spheres of data were collected using a combination of  $\omega$  and  $\varphi$  scans with scan widths varying between 0.3 and 0.5° and exposure times chosen to provide the maximum possible numbers of observable diffraction maxima. The raw intensity data were converted to  $F^2$  values with SAINT [Bruker-AXS **2004**. SAINT+, Version 7.03, Madison, WI] and at the same time a global refinement of unit cell parameters was performed. Empirical absorption corrections and merging of symmetry equivalent reflections was performed with SADABS [Sheldrick, G. M. **2002**. *SADABS*, Version 2.05. University of Göttingen, Germany]. The structures were solved by direct methods (SHELXS) and refined by full-matrix least-squares procedures (SHELXL) [Sheldrick, G. M. *Acta Cryst.*, **2008**, *A64*, 112-122; Bruker-AXS, **2000**, *SHELXTL*, Version 6.10, Madison, WI]. In most instances at least some of the hydrogen atoms could be observed. Those attached to carbon were placed in idealized positions while those attached to nitrogen (in the alloys) were placed in positions derived from difference maps and all were included as riding contributions with isotropic displacement parameters tied to those of the attached atoms.

**a-PyrIN:** In the latter stages of refinement for this structure, a definite electron density peak appeared about as far from N2 as O1 is from N1 suggesting partial occupancy of this site by oxygen. Trial refinements of oxygen site-occupancy factors (sof) treating this as representing a small amount of co-crystallized PyrNN and as a rotational disorder of the 5-membered ring did not provide a clear indication of which might be the better model. However the fact that the site occupancy factor of O1 refined to 0.96 while that for the peak near N2 refined to 0.09 suggests that the co-crystal model may be preferred.

 $\beta$ -PyrIN: Two independent molecules of the complex are present in the asymmetric unit. Although most of each molecule could be located in difference maps, it became evident that each was severely disordered. The disorder of the pyrenyl portions was treated by fitting a rigid model derived from a published structure of pyrene, since many resolved carbon sites as could be adequately identified using the FRAG function of SHELXL. Once this model was in place, sufficient numbers of atoms of the disordered iminoylnitroxide substituent could be located to define the orientations of the two components of this disorder and subsequent refinement enabled the remaining atoms to be located. Final refinement was carried out with restraints that the geometries of the two components of the two sum to 1.0.

Crystallographic packing representations in this article were created using the ORTEP [Farrugia, L. J. *J. Appl. Cryst.* **1997**, *30*, 565] and Mercury [Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. *J. Appl. Cryst.*, **2008**, *41*, 466-470.] programs.

**Figure S2**. C<sub>6</sub>F<sub>6</sub> contacts in (PyrNN)<sub>2</sub>·C<sub>6</sub>F<sub>6</sub> co-crystal.



Figure S3. Magnetization versus field data for samples in this study.  $\alpha$ -PyrIN and  $\beta$ -PyrNN show essentially zero magnetization at 1.8 K.



**Figure S4**. Half-dimer model fit for  $\alpha$ -PyrNN  $\chi T$  vs *T* data at 1000 Oe (dc), no mean field, fitted paramagnetic fraction.



Spin pairing model for S = 1/2 spin units

$$H = -JS_1 \cdot S_2$$

 $N\beta^2/k = 0.375$  emu-K/Oe-mol, F = purity factor (fraction of paramagnetic  $S = \frac{1}{2}$  spins)

$$\chi T = \left[ C \cdot \frac{2}{3 + \exp(-J_{BB}/kT)} \right] \cdot (1 - F) + (F) \cdot 0.375 \cdot \frac{T}{T - \theta} , \quad C = \frac{Ng^2\beta^2}{k} = 0.375g^2$$
$$\chi T = \left[ C \cdot \frac{2}{3 + \exp(-J_{BB}/kT)} \right] \cdot \frac{T}{T - \theta_1} \cdot (1 - F) + (F) \cdot 0.375 \cdot \frac{T}{T - \theta_2} , \quad C = \frac{Ng^2\beta^2}{k} = 0.375g^2$$

Uncertainties are standard deviations; zero uncertainty means the parameter was fixed.

**Figure S5**. Half-dimer model fit for  $\alpha$ -PyrNN  $\chi T$  vs *T* data at 1000 Oe (dc), fixed paramagnetic fraction of molecules with a mean field term.



Figure S6.  $\chi T$  vs T data for  $\beta$ -PyrNN at 1000 Oe (dc), with fit to spin pairing model, showing fitted term output.



Spin pairing model for S = 1/2 spin units

$$H = -JS_1 \cdot S_2$$

 $N\beta^2/k = 0.375$  emu-K/Oe-mol, F = purity factor (fraction of paramagnetic  $S = \frac{1}{2}$  spins)

$$\chi T = \left[ C \cdot \frac{2}{3 + \exp(-J_{BB}/kT)} \right] \cdot \frac{T}{T - \theta_1} \cdot (1 - F) + (F) \cdot 0.375 \cdot \frac{T}{T - \theta_2} \quad , \quad C = \frac{Ng^2\beta^2}{k} = 0.375g^2$$

Uncertainties are standard deviations; zero uncertainty means the parameter was fixed.

**Figure S7**.  $\chi T$  vs *T* data for  $\alpha$ -PyrIN at 1000 Oe (dc), with fit to spin pairing model.



Spin pairing model for S = 1/2 spin units

$$H = -JS_1 \cdot S_2$$

 $N\beta^2/k = 0.375$  emu-K/Oe-mol, F = purity factor (fraction of paramagnetic S =  $\frac{1}{2}$  spins)

$$\chi T = \left[ C \cdot \frac{2}{3 + \exp(-J_{BB}/kT)} \right] \cdot \frac{T}{T - \theta} \cdot (1 - F) + (F) \cdot 0.375 \quad , \quad C = \frac{Ng^2\beta^2}{k} = 0.375g^2$$

Uncertainties are standard deviations; zero uncertainty means the parameter was fixed.





**Figure S9**.  $\chi T$  vs *T* data for (PyrNN)<sub>2</sub>·C<sub>6</sub>F<sub>6</sub> at 1000 Oe (dc); solid lines shows fits to 1-D chain model with (left) and without (right) mean field correction.



1-D linear Heisenberg chain model for S = 1/2 spin units

From Swank, D. D.; Landee, C. P., Willet, R. D. Phys. Rev. B, 1979, 20, 2154.

$$\chi T = \frac{Ng^{2}\beta^{2}}{4k} \cdot \frac{T}{T-\theta} \cdot \left[ \frac{1 + A \cdot \left( \frac{J_{BF}}{2kT} \right) + B \cdot \left( \frac{J_{BF}}{2kT} \right)^{2} + C \cdot \left( \frac{J_{BF}}{2kT} \right)^{3} + D \cdot \left( \frac{J_{BF}}{2kT} \right)^{4} + E \cdot \left( \left( \frac{J_{BF}}{2kT} \right)^{5} \right)^{\frac{3}{2}}}{1 + F \cdot \left( \frac{J_{BF}}{2kT} \right) + G \cdot \left( \frac{J_{BF}}{2kT} \right)^{2} + H \cdot \left( \frac{J_{BF}}{2kT} \right)^{3} + I \cdot \left( \frac{J_{BF}}{2kT} \right)^{4}} \right]^{\frac{3}{2}}$$
$$H = -2J \sum_{N=1}^{\infty} S_{1} \cdot S_{1+N}$$

A = 5.7979916, B = 16.902653, C = 29.376885, D = 29.832959, E = 14.036918and F = 2.7979916, G = 7.0086780, H = 8.6538644, I = 4.5743114



The fit without mean field correction gave g = 1.999 and  $J_{1D}/k = (-)1.716\pm0.003$  K when converted to a Hamiltonian with J instead of 2J.

Uncertainties are standard deviations; zero uncertainty means the parameter was fixed.

S10

**Figure S10**.  $\chi T$  vs *T* data with spin ladder fitting for (PyrNN)<sub>2</sub>·C<sub>6</sub>F<sub>6</sub> at 1000 Oe (dc).





 $H = J_{rail} \sum_{i=1}^{2} \sum_{j=1}^{\infty} \mathbf{S}_{i,j} \cdot \mathbf{S}_{i,j+1} + J_{rung} \sum_{j=1}^{\infty} \mathbf{S}_{1,j} \cdot \mathbf{S}_{2,j}$ , where index j refers to the position of the spin along the ladder length and

index i = 1,2 refers to which side of the ladder on which the spin is located. Derived from Johnston, D. C., et al. arXiv:cond-mat/0001147, 2000 (see Table VII in this reference).

| [TNDVAR1. T          | D25=_0_00385344                                                                          |
|----------------------|------------------------------------------------------------------------------------------|
| [DEPVAR]:XT          | D26=0.00379963                                                                           |
| [PARAMS]: 11.12.0    | D30=0.13304199                                                                           |
| [EOUATIONS1:         | 031=-0.25099527                                                                          |
| []                   | D32=0.11749096                                                                           |
| C=2*2*0.5*a*a/4      | 0330.07871375                                                                            |
| E1=J1/T              | D34=0.04106834                                                                           |
| DEL=0.4030*(J2/J1) + | D35=-0.01886681                                                                          |
| 0.0989*(J2/J1)^3     | D36=0.00157755                                                                           |
| PRE=C*EXP(-DEL*J1/T) | D37=-0.00387185                                                                          |
| N10=-0.05383784      | D38=0.00019055                                                                           |
| N11=-0.67282213      | D39=-0.00010728                                                                          |
| N12=0.03896299       | D40=0.03718413                                                                           |
| N13=0.01103114       | D41=-0.10249898                                                                          |
| N20=0.09740136       | D42=0.04316152                                                                           |
| N21=0.12334838       | D43=0.01936105                                                                           |
| N22=-0.0253489       | D50=0.002813608                                                                          |
| N23=0.00655748       | D51=0.000402749                                                                          |
| N30=0.01446744       | D52=0.001958564                                                                          |
| N31=-0.03965984      | D53=-0.003803837                                                                         |
| N32=-0.03120146      | D60=0.0002646763                                                                         |
| N33=0.02118588       | D61=-0.0010424633                                                                        |
| N40=0.001392519      | D62=0.0015813041                                                                         |
| N41=0.006657608      | D63=-0.000291445                                                                         |
| N42=-0.020207553     | NUM1=E1*(N10+N11*(J2/J1)+N12*(J2/J1)*(J2/J1)+N13*(J2/J1)*(J2/J1)*(J2/J1))                |
| N43=0.008830122      | NUM2=E1*E1*(N20+N21*(J2/J1)+N22*(J2/J1)*(J2/J1)+N23*(J2/J1)*(J2/J1)*(J2/J1))             |
| N50=0.0001139343     | NUM3=E1*E1*E1*(N30+N31*(J2/J1)+N32*(J2/J1)*(J2/J1)+N33*(J2/J1)*(J2/J1)*(J2/J1))          |
| N51=0.0001341951     | NUM4=E1*E1*E1*E1*(N40+N41*(J2/J1)+N42*(J2/J1)*(J2/J1)+N43*(J2/J1)*(J2/J1)*(J2/J1))       |
| N52=0.0016684229     | NUM5=E1*E1*E1*E1*E1*(N50+N51*(J2/J1)+N52*(J2/J1)*(J2/J1)+N53*(J2/J1)*(J2/J1)*(J2/J1))    |
| N53=-0.0001396407    | NUM6=E1*E1*E1*E1*E1*E1*(N60+N61*(J2/J1)+N62*(J2/J1)*(J2/J1)+N63*(J2/J1)*(J2/J1)*(J2/J1)) |
| N60=0.0              | NUM=NUM1+NUM2+NUM3+NUM4+NUM5+NUM6                                                        |
| N61=0.0000422531     | DUM1=E1*(D10+D11*(J2/J1)+D12*(J2/J1)*(J2/J1)+D13*(J2/J1)*(J2/J1)*(J2/J1))                |
| N62=-0.0001609830    | DUM2a=E1*E1*(D20+D21*(J2/J1)+D22*(J2/J1)*(J2/J1)+D23*(J2/J1)*(J2/J1)*(J2/J1))            |
| N63=0.0001335788     | DUM2b=E1*E1*(D24*(J2/J1)^4+D25*(J2/J1)^5+D26*(J2/J1)^6)                                  |
| D10=0.44616216       | DUM3a=E1*E1*(D30+D31*(J2/J1)+D32*(J2/J1)*(J2/J1)+D33*(J2/J1)*(J2/J1)*(J2/J1))            |
| D11=-0.82582213      | DUM3b=E1*E1*(D34*(J2/J1)^4+D35*(J2/J1)^5+D36*(J2/J1)^6)                                  |
| D12=0.03896299       | DUM3c=E1*E1*(D37*(J2/J1)^7+D38*(J2/J1)^8+D39*(J2/J1)^9)                                  |
| D13=-0.8786886       | DUM4=E1*(D40+D41*(J2/J1)+D42*(J2/J1)*(J2/J1)+D43*(J2/J1)*(J2/J1)*(J2/J1))                |
| D20=0.32048245       | DUM5=E1*(D50+D51*(J2/J1)+D52*(J2/J1)*(J2/J1)+D53*(J2/J1)*(J2/J1)*(J2/J1))                |
| D21=-0.40632550      | DUM6=E1*(D60+D61*(J2/J1)+D62*(J2/J1)*(J2/J1)+D63*(J2/J1)*(J2/J1)*(J2/J1))                |
| D22=0.20252880       | DUM=DUM1+DUM2a+DUM2b+DUM3a+DUM3b+DUM3c+DUM4+DUM5+DUM6                                    |
| D23=-0.03801372      |                                                                                          |
| D24=0.07998604       | XT=PRE*(1+NUM)/(1+DUM)                                                                   |

Fitting to the above function gave g = 2.061,  $J_{rail}/k = (-)1.95\pm0.20$  K,  $J_{rung}/k = (-)1.2\pm0.2$  K. Uncertainties are standard deviations; zero uncertainty means the parameter was fixed. However, the statistical analysis also showed co-dependency of >0.9 for the two exchange constants, hence this model was rejected.

**Figure S11**.  $\chi T$  vs *T* data with 2-D square planar fitting for (PyrNN)<sub>2</sub>·C<sub>6</sub>F<sub>6</sub> at 1000 Oe (dc).



2-D Heisenberg Square Planar AFM system, all  $S = \frac{1}{2}$  spin units.

From Baker, G., Jr.; Gilbert, H. E.; Eve, J.; Rushbrooke, G. S. Phys. Rev. Lett., 1967, 25A(3), 207.

$$\chi = \frac{Ng^{2}\beta^{2}}{kT} \cdot \left[ 1 + \frac{4x}{2} + \frac{16x^{2}}{(2!)(2^{2})} + \frac{64x^{3}}{(3!)(2^{3})} + \frac{416x^{4}}{(4!)(2^{4})} + \frac{4544x^{5}}{(5!)(2^{5})} + \frac{23488x^{6}}{(6!)(2^{6})} - \frac{207616x^{7}}{(7!)(2^{7})} + \frac{4205056x^{8}}{(8!)(2^{8})} + \frac{198295552x^{9}}{(9!)(2^{9})} - \frac{2574439424x^{10}}{(10!)(2^{10})} \right]$$

$$x = J/kT$$

$$H = -2J\sum_{i,j}^{i \neq j} S_{i} \cdot S_{j} \quad \text{[for i < j, j - i = 1]}$$

$$\sum_{i,j}^{2J_{2D}} \sum_{i,j}^{2J_{2D}} \sum_{i,j}^{2J_{2D}}} \sum_{i,j}^{2J_{2D}} \sum_{i,j}^{2J_{2$$

Fitting to the above function gave g = 2.0037,  $J_{2D}/k = (-)0.986 \pm 0.004$  K when converted to a Hamiltonian with J instead of 2J. Uncertainties are standard deviations; zero uncertainty means the parameter was fixed.

#### S12

### Archival summaries of computational estimates of exchange for dyad models.

All computations carried out using Gaussian 09 for SuSE Linux. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox. Gaussian 09, Revision B.01, Gaussian, Inc: Wallingford CT, 2010.

Alpha-PyrIN model dyad (replace pyrene and methyls by H) - singlet UB3LYP/6-31G\*

1\1\GINC-SKYNET\SP\UB3LYP\6-31G(d)\C6H10N402\LAHTI\06-Mar-2011\0\\#P G
FINPUT IOP(6/7=3) UB3LYP/6-31G\* TEST GUESS=(READ,MIX)\\Pyrene-IN NO--O
N contact (S-T xtl geom)\\0,1\C,0,-2.722,0.662,0.804\C,0,2.722,-0.662,
-0.804\C,0,2.764,0.198,-2.098\C,0,-2.764,-0.198,2.098\H,0,0.134,1.434,
2.382\H,0,-0.226,-1.353,-2.444\C,0,0.746,-0.933,-2.159\C,0,-0.813,0.93
6,2.143\H,0,-2.564,-1.272,1.841\H,0,3.346,-1.584,-0.946\H,0,3.735,0.02
3,-2.632\H,0,-3.735,-0.023,2.632\H,0,2.564,1.272,-1.841\H,0,2.929,-0.0
1,0.086\H,0,-2.929,0.01,-0.086\H,0,-3.346,1.584,0.946\N,0,-1.64,0.335,
2.921\N,0,1.64,-0.335,-2.921\N,0,1.281,-1.03,-0.825\N,0,-1.281,1.03,0.
825\0,0,0.666,-1.503,0.177\0,0,-0.666,1.503,-0.177\\Version=EM64L-G09R
evB.01\State=1-A\HF=-603.9013655\S2=1.021313\S2-1=0.\S2A=0.265423\RMSD
=6.000e-09\Dipole=-0.0433768,0.0167506,-0.0333925\Quadrupole=13.068922
7,-1.2248764,-11.8440463,0.7722017,0.7942993,4.3471792\PG=C01 [X(C6H10
N402)]\\@

Alpha-PyrIN model dyad (replace pyrene and methyls by H) - triplet UB3LYP/6-31G\*

1\1\GINC-SKYNET\SP\UB3LYP\6-31G(d)\C6H10N402(3)\LAHTI\06-Mar-2011\0\\#
P GFINPUT IOP(6/7=3) UB3LYP/6-31G\* TEST\\Pyrene-IN NO--ON contact (S-T
xtl geom)\\0,3\C,0,-2.722,0.662,0.804\C,0,2.722,-0.662,-0.804\C,0,2.7
64,0.198,-2.098\C,0,-2.764,-0.198,2.098\H,0,0.134,1.434,2.382\H,0,-0.2
26,-1.353,-2.444\C,0,0.746,-0.933,-2.159\C,0,-0.813,0.936,2.143\H,0,-2
.564,-1.272,1.841\H,0,3.346,-1.584,-0.946\H,0,3.735,0.023,-2.632\H,0,3.735,-0.023,2.632\H,0,2.564,1.272,-1.841\H,0,2.929,-0.01,0.086\H,0,-2
.929,0.01,-0.086\H,0,-3.346,1.584,0.946\N,0,-1.64,0.335,2.921\N,0,1.64
,-0.335,-2.921\N,0,1.281,-1.03,-0.825\N,0,-1.281,1.03,0.825\O,0,0.666,
-1.503,0.177\O,0,-0.666,1.503,-0.177\\Version=EM64L-G09RevB.01\State=3
-A\HF=-603.9007979\S2=2.034541\S2-1=0.\S2A=2.000569\RMSD=5.492e-09\Dip
ole=-0.0459789,0.0186226,-0.0318582\Quadrupole=13.0472694,-1.2407639,11.8065055,0.7905364,0.774011,4.3442889\PG=C01 [X(C6H10N402)]\\@

Alpha-PyrNN model dyad (replace pyrene and methyls by H) - singlet UB3LYP/6-31G\*

1\1\GINC-SKYNET\Stability\UB3LYP\6-31G(d)\C6H10N404\LAHTI\07-Mar-2011\
0\\#P GFINPUT IOP(6/7=3) UB3LYP/6-31G\* TEST GUESS=(READ,MIX) STABLE=OP
T\\Pyrene-NN NO--ON contact (S-T xtl geom)\\0,1\C,0,-3.769,0.069,-4.98
2\C,0,-0.787,-2.065,-1.788\C,0,-2.69,-0.828,-6.873\C,0,-1.866,-1.169,0
.104\C,0,-2.862,-2.037,-0.677\C,0,-1.694,0.04,-6.093\H,0,-0.025,-2.352
,-2.522\H,0,-4.531,0.356,-4.248\H,0,-3.807,-1.458,-0.85\H,0,-0.748,-0.
538,-5.919\H,0,-2.957,-3.037,-0.178\H,0,-1.598,1.041,-6.591\H,0,-2.518
,-1.909,-6.627\H,0,-2.675,-0.532,-7.956\H,0,-1.88,-1.464,1.187\H,0,-2.
037,-0.087,-0.142\N,0,-3.979,-0.365,-6.242\N,0,-0.577,-1.631,-0.527\N,
0,-2.431,0.195,-4.795\N,0,-2.125,-2.192,-1.975\O,0,-5.119,-0.5,-6.825\
O,0,0.563,-1.494,0.056\O,0,-2.71,-2.581,-3.05\O,0,-1.846,0.585,-3.72\\Version=EM64L-G09RevB.01\State=1-A\HF=-754.2345433\S2=1.116057\S2-1=0.
\S2A=0.93528\RMSD=6.981e-09\Dipole=0.0002573,-0.0019517,0.000105\Quadr
upole=-9.9394784,1.9114549,8.0280234,-2.2713527,-20.7590782,-2.9461819
\PG=C01 [X(C6H10N404)]\\@

Alpha-PyrNN model dyad (replace pyrene by H) - triplet UB3LYP/6-31G\*

1\1\GINC-SKYNET\SP\UB3LYP\6-31G(d)\C6H10N404(3)\LAHTI\07-Mar-2011\0\\#
P GFINPUT IOP(6/7=3) UB3LYP/6-31G\* TEST\\Pyrene-NN NO--ON contact (S-T
xtl geom)\\0,3\C,0,-3.769,0.069,-4.982\C,0,-0.787,-2.065,-1.788\C,0,2.69,-0.828,-6.873\C,0,-1.866,-1.169,0.104\C,0,-2.862,-2.037,-0.677\C,

0,-1.694,0.04,-6.093\H,0,-0.025,-2.352,-2.522\H,0,-4.531,0.356,-4.248\ H,0,-3.807,-1.458,-0.85\H,0,-0.748,-0.538,-5.919\H,0,-2.957,-3.037,-0. 178\H,0,-1.598,1.041,-6.591\H,0,-2.518,-1.909,-6.627\H,0,-2.675,-0.532 ,-7.956\H,0,-1.88,-1.464,1.187\H,0,-2.037,-0.087,-0.142\N,0,-3.979,-0. 365,-6.242\N,0,-0.577,-1.631,-0.527\N,0,-2.431,0.195,-4.795\N,0,-2.125 ,-2.192,-1.975\0,0,-5.119,-0.5,-6.825\0,0,0.563,-1.494,0.056\0,0,-2.71 ,-2.581,-3.05\0,0,-1.846,0.585,-3.72\\version=EM64L-G09RevB.01\State=3 -A\HF=-754.2344673\S2=2.120438\S2-1=0.\S2A=2.006135\RMSD=7.967e-09\Dip ole=0.0002664,-0.0019474,0.0001154\Quadrupole=-9.929528,1.8878897,8.04 16383,-2.2819392,-20.7210841,-2.9430759\PG=C01 [X(C6H10N404)]\\@

Beta-PyrNN model dyad (replace pyrene and methyls by H) - singlet UB3LYP/6-31G\*

1\1\GINC-SKYNET\Stability\UB3LYP\6-31G(d)\C14H26N404\LAHTI\31-Jul-2011 \0\\#P GFINPUT IOP(6/7=3) TEST SCF=DIRECT UB3LYP/6-31G\* STABLE=OPT\\NN -NN close contact, beta-PyrNN, no Pyr\\0,1\N,0,-0.45,0.685,21.965\0,0, -1.568,1.604,25.078\N,0,-0.948,1.188,24.041\0,0,-0.468,0.656,20.688\C, 0,0.614,-0.011,22.764\C,0,-1.398,1.22,22.768\C,0,0.487,0.76,24.104\C,0 ,0.722,-0.068,25.347\H,0,0.206,-0.875,25.297\H,0,0.456,0.434,26.121\H, 0,1.654,-0.288,25.412\C,0,1.951,0.118,22.061\H,0,2.197,1.045,22.008\H, 0,1.883,-0.244,21.174\H,0,2.62,-0.364,22.553\C,0,0.19,-1.474,22.857\H, 0,-0.655,-1.535,23.31\H,0,0.851,-1.969,23.347\H,0,0.107,-1.841,21.973\ C,0,1.296,2.061,24.142\H,0,1.125,2.567,23.344\H,0,2.232,1.853,24.194\H ,0,1.039,2.575,24.91\N,0,-3.688,-0.685,27.98\O,0,-2.57,-1.604,24.868\N ,0,-3.19,-1.188,25.905\0,0,-3.671,-0.656,29.257\C,0,-4.753,0.011,27.18 2\C,0,-2.74,-1.22,27.178\C,0,-4.626,-0.76,25.842\C,0,-4.861,0.068,24.5 98\H,0,-4.344,0.875,24.648\H,0,-4.594,-0.434,23.824\H,0,-5.793,0.288,2 4.533\C,0,-6.09,-0.118,27.885\H,0,-6.336,-1.045,27.937\H,0,-6.021,0.24 4,28.771\H,0,-6.759,0.364,27.393\C,0,-4.329,1.474,27.088\H,0,-3.484,1. 535,26.636\H,0,-4.99,1.969,26.598\H,0,-4.245,1.841,27.972\C,0,-5.435,-2.061,25.804\H,0,-5.264,-2.567,26.601\H,0,-6.371,-1.853,25.752\H,0,-5. 178, -2.575, 25.035\H, 0, -2.330749, 1.690866, 22.437121\H, 0, -1.807458, -1.69 114,27.509071\\Version=EM64L-G09RevB.01\State=1-A\HF=-1068.444933\S2=1 .099938\S2-1=0.\S2A=0.819323\RMSD=8.865e-09\Dipole=0.0003896,-0.000359 5,0.0003441\Quadrupole=20.7188095,2.0496639,-22.7684734,-1.1239089,2.6 033269,0.5862312\PG=C01 [X(C14H26N4O4)]\\@

Beta-PyrNN model dyad (replace pyrene and methyls by H) - triplet UB3LYP/6-31G\*

```
1\1\GINC-SKYNET\SP\UB3LYP\6-31G(d)\C14H26N404(3)\LAHTI\31-Jul-2011\0\\
#P GFINPUT IOP(6/7=3) TEST SCF=DIRECT UB3LYP/6-31G*\\NN-NN close conta
ct, beta-PyrNN, no Pyr\\0,3\N,0,-0.45,0.685,21.965\0,0,-1.568,1.604,25
 .078\N,0,-0.948,1.188,24.041\0,0,-0.468,0.656,20.688\C,0,0.614,-0.011,
22.764\C,0,-1.398,1.22,22.768\C,0,0.487,0.76,24.104\C,0,0.722,-0.068,2
5.347\H,0,0.206,-0.875,25.297\H,0,0.456,0.434,26.121\H,0,1.654,-0.288,
25.412\C,0,1.951,0.118,22.061\H,0,2.197,1.045,22.008\H,0,1.883,-0.244,
21.174\H,0,2.62,-0.364,22.553\C,0,0.19,-1.474,22.857\H,0,-0.655,-1.535
 ,23.31\H,0,0.851,-1.969,23.347\H,0,0.107,-1.841,21.973\C,0,1.296,2.061
 ,24.142\H,0,1.125,2.567,23.344\H,0,2.232,1.853,24.194\H,0,1.039,2.575,
24.91\N,0,-3.688,-0.685,27.98\0,0,-2.57,-1.604,24.868\N,0,-3.19,-1.188
 ,25.905\0,0,-3.671,-0.656,29.257\C,0,-4.753,0.011,27.182\C,0,-2.74,-1.
22,27.178\C,0,-4.626,-0.76,25.842\C,0,-4.861,0.068,24.598\H,0,-4.344,0
 .875,24.648\H,0,-4.594,-0.434,23.824\H,0,-5.793,0.288,24.533\C,0,-6.09
 ,-0.118,27.885\H,0,-6.336,-1.045,27.937\H,0,-6.021,0.244,28.771\H,0,-6
 .759,0.364,27.393\C,0,-4.329,1.474,27.088\H,0,-3.484,1.535,26.636\H,0,
-4.99,1.969,26.598\H,0,-4.245,1.841,27.972\C,0,-5.435,-2.061,25.804\H,
0,-5.264,-2.567,26.601\H,0,-6.371,-1.853,25.752\H,0,-5.178,-2.575,25.0
35\H,0,-2.330749,1.690866,22.437121\H,0,-1.807458,-1.69114,27.509071\\
Version=EM64L-G09RevB.01\State=3-A\HF=-1068.4447149\S2=2.104891\S2-1=0
 .\S2A=2.004708\RMSD=8.164e-09\Dipole=0.0004003,-0.000356,0.0003307\Qua
drupole=20.7063922,2.0353573,-22.7417495,-1.1301547,2.5918291,0.583937
2\PG=C01 [X(C14H26N4O4)]\\@
```

PyrNN\*2 / C6F6 rail model dyad (replace pyrene and methyls by H)- singlet UB3LYP/6-31G\*

1\1\GINC-SKYNET\Stability\UB3LYP\6-31G(d)\C14H26N404\LAHTI\07-Mar-2011 \0\\#P GFINPUT IOP(6/7=3) UB3LYP/6-31G\* TEST GUESS=(READ,MIX) STABLE=0 PT\\Pyrene-NN co C6F6 rail contact\\0,1\N,0,8.603,-7.075,2.422\0,0,8.2 41,-5.959,1.912\H,0,7.494,-7.089,4.277\H,0,11.065,-10.428,2.052\H,0,11 .033,-6.315,2.012\C,0,11.01,-7.227,2.31\H,0,11.762,-7.701,1.947\H,0,11 .05,-7.251,3.269\H,0,8.826,-8.297,0.043\C,0,8.426,-10.101,1.727\H,0,7. 665,-9.559,1.504\H,0,8.143,-10.839,2.273\H,0,8.827,-10.436,0.921\C,0,9 .442,-9.261,2.492\H,0,7.494,0.428,4.277\H,0,10.393,-10.824,3.412\C,0,8 .167,-7.604,3.583\N,0,8.739,-8.814,3.748\C,0,9.72,-7.885,1.838\0,0,8.6  $28, -9.568, 4.772 \setminus H, 0, 11.291, -9.542, 3.324 \setminus H, 0, 10.39, -8.329, -0.044 \setminus C, 0, 9.$   $635, -7.865, 0.323 \setminus C, 0, 10.66, -10.09, 2.853 \setminus H, 0, 9.636, -6.956, 0.015 \setminus C, 0, 8.1$   $67, -0.087, 3.583 \setminus N, 0, 8.739, -1.297, 3.748 \setminus O, 0, 8.628, -2.052, 4.772 \setminus C, 0, 9.44$   $2, -1.745, 2.492 \setminus C, 0, 9.72, -0.368, 1.838 \setminus N, 0, 8.603, 0.441, 2.422 \setminus O, 0, 8.241, 1.557, 1.912 \setminus C, 0, 8.426, -2.585, 1.727 \setminus H, 0, 7.665, -2.043, 1.504 \setminus H, 0, 8.143, -3.$   $322, 2.273 \setminus H, 0, 8.827, -2.919, 0.921 \setminus C, 0, 10.66, -2.574, 2.853 \setminus H, 0, 11.291, -2.$   $026, 3.324 \setminus H, 0, 11.065, -2.912, 2.052 \setminus H, 0, 10.393, -3.307, 3.412 \setminus C, 0, 9.635, -0.$   $349, 0.323 \setminus H, 0, 8.826, -0.781, 0.043 \setminus H, 0, 10.39, -0.813, -0.044 \setminus H, 0, 9.636, 0.$   $56, 0.015 \setminus C, 0, 11.01, 0.289, 2.31 \setminus H, 0, 11.05, 0.265, 3.269 \setminus H, 0, 11.033, 1.201, 2.$   $012 \setminus H, 0, 11.762, -0.185, 1.947 \setminus Version=EM64L-G09RevB.01 \setminus State=1-A \setminus HF=-1$   $068.4358902 \setminus S2=1.105753 \setminus S2-1=0. \times S2A=0.833149 \setminus RMSD=9.611e-09 \setminus Dipole=1.5$   $334172, -1.4105045, -1.570706 \setminus Quadrupole=8.2011381, -6.0415974, -2.1595408$  $2.4671034, -2.1286845, 12.2749315 \setminus PG=C01 [X(C14H26N404)] \setminus 0$ 

PyrNN\*2 / C6F6 rail model dyad (replace pyrene by H) - triplet UB3LYP/6-31G\*

#### Test job not archived.

1\1\GINC-SKYNET\SP\UB3LYP\6-31G(d)\C14H26N4O4(3)\LAHTI\07-Mar-2011\0\\ #P GFINPUT IOP(6/7=3) UB3LYP/6-31G\* TEST\\Pyrene-NN co C6F6 rail conta ct/\0,3\N,0,8.603,-7.075,2.422\0,0,8.241,-5.959,1.912\H,0,7.494,-7.089 ,4.277\H,0,11.065,-10.428,2.052\H,0,11.033,-6.315,2.012\C,0,11.01,-7.2 27,2.31\H,0,11.762,-7.701,1.947\H,0,11.05,-7.251,3.269\H,0,8.826,-8.29 7,0.043\C,0,8.426,-10.101,1.727\H,0,7.665,-9.559,1.504\H,0,8.143,-10.8 39,2.273\H,0,8.827,-10.436,0.921\C,0,9.442,-9.261,2.492\H,0,7.494,0.42 8,4.277\H,0,10.393,-10.824,3.412\C,0,8.167,-7.604,3.583\N,0,8.739,-8.8 14,3.748\C,0,9.72,-7.885,1.838\O,0,8.628,-9.568,4.772\H,0,11.291,-9.54 2,3.324\H,0,10.39,-8.329,-0.044\C,0,9.635,-7.865,0.323\C,0,10.66,-10.0 9,2.853\H,0,9.636,-6.956,0.015\C,0,8.167,-0.087,3.583\N,0,8.739,-1.297 ,3.748\0,0,8.628,-2.052,4.772\C,0,9.442,-1.745,2.492\C,0,9.72,-0.368,1 .838\N,0,8.603,0.441,2.422\0,0,8.241,1.557,1.912\C,0,8.426,-2.585,1.72 7\H,0,7.665,-2.043,1.504\H,0,8.143,-3.322,2.273\H,0,8.827,-2.919,0.921 \C,0,10.66,-2.574,2.853\H,0,11.291,-2.026,3.324\H,0,11.065,-2.912,2.05 2\H,0,10.393,-3.307,3.412\C,0,9.635,-0.349,0.323\H,0,8.826,-0.781,0.04 3\H,0,10.39,-0.813,-0.044\H,0,9.636,0.56,0.015\C,0,11.01,0.289,2.31\H, 0,11.05,0.265,3.269\H,0,11.033,1.201,2.012\H,0,11.762,-0.185,1.947\\ve rsion=EM64L-G09RevB.01\State=3-A\HF=-1068.4358905\S2=2.105759\S2-1=0.\ S2A=2.004776\RMSD=3.243e-09\Dipole=1.533421,-1.4104874,-1.5707145\Quad rupole=8.2012117,-6.041711,-2.1595007,2.467148,-2.1286768,12.2749227\P G=C01 [X(C14H26N4O4)]\\@

PyrNN\*2 / C6F6 rung A model dyad (replace pyrene by H) - singlet UB3LYP/6-31G\*

```
1\1\GINC-SKYNET\Stability\UB3LYP\6-31G(d)\C14H26N4O4\LAHTI\07-Mar-2011
\0\\#P GFINPUT IOP(6/7=3) UB3LYP/6-31G* TEST GUESS=(READ,MIX) STABLE=0
PT\\Pyrene-NN co C6F6 rung contact\\0,1\C,0,0.49,-0.087,2.377\C,0,-0.4
9,0.087,-4.79\C,0,-1.765,1.745,-3.698\C,0,1.765,-1.745,1.285\C,0,-2.04
3,0.368,-3.045\C,0,2.043,-0.368,0.631\C,0,0.749,-2.585,0.52\C,0,-0.749
,2.585,-2.934\C,0,-2.983,2.574,-4.059\C,0,2.983,-2.574,1.646\C,0,1.958
 ,-0.349,-0.884\C,0,-1.958,0.349,-1.53\C,0,3.333,0.289,1.103\C,0,-3.333
 ,-0.289,-3.516\H,0,0.183,-0.428,-5.484\H,0,-0.184,0.428,3.071\N,0,1.06
2,-1.297,2.542\N,0,-1.062,1.297,-4.955\N,0,0.926,0.441,1.215\N,0,-0.92
6,-0.441,-3.628\0,0,0.951,-2.052,3.566\0,0,-0.951,2.052,-5.979\0,0,-0.
564,-1.557,-3.119\0,0,0.564,1.557,0.705\H,0,0.012,2.043,-2.711\H,0,-0.
012,-2.043,0.297\H,0,0.466,-3.322,1.067\H,0,-0.466,3.322,-3.48\H,0,1.1
5,-2.919,-0.286\H,0,-1.15,2.919,-2.128\H,0,3.614,-2.026,2.117\H,0,-3.6
14,2.026,-4.53\H,0,3.388,-2.912,0.845\H,0,-3.388,2.912,-3.258\H,0,2.71
6,-3.307,2.205\H,0,-2.716,3.307,-4.618\H,0,1.149,-0.781,-1.164\H,0,-1.
149,0.781,-1.25\H,0,-2.713,0.813,-1.163\H,0,2.713,-0.813,-1.251\H,0,1.
959,0.56,-1.192\H,0,-1.959,-0.56,-1.222\H,0,-3.373,-0.265,-4.476\H,0,3
 .373,0.265,2.063\H,0,-3.356,-1.201,-3.218\H,0,3.356,1.201,0.805\H,0,4.
085,-0.185,0.74\H,0,-4.085,0.185,-3.154\\Version=EM64L-G09RevB.01\Stat
e=1-A\HF=-1068.4400981\S2=1.103753\S2-1=0.\S2A=0.818158\RMSD=7.694e-09
\Dipole=-0.0004032,0.0000143,0.0001796\Quadrupole=18.2978257,-1.495594
4,-16.8022313,-3.9678589,0.6929532,9.1282142\PG=C01 [X(C14H26N4O4)]\\@
```

PyrNN\*2 / C6F6 rung A model dyad (replace pyrene by H) - triplet UB3LYP/6-31G\*

1\1\GINC-SKYNET\SP\UB3LYP\6-31G(d)\C14H26N404(3)\LAHTI\07-Mar-2011\0\\
#P GFINPUT IOP(6/7=3) UB3LYP/6-31G\* TEST\\Pyrene-NN co C6F6 rung conta
ct\\0,3\C,0,0.49,-0.087,2.377\C,0,-0.49,0.087,-4.79\C,0,-1.765,1.745,3.698\C,0,1.765,-1.745,1.285\C,0,-2.043,0.368,-3.045\C,0,2.043,-0.368,

0.631\C,0,0.749,-2.585,0.52\C,0,-0.749,2.585,-2.934\C,0,-2.983,2.574,- $4.059 \\ (C, 0, 2.983, -2.574, 1.646 \\ (C, 0, 1.958, -0.349, -0.884 \\ (C, 0, -1.958, 0.349, -0.846 \\ (C, 0, -1.958, 0.349, -0.846 \\ (C, 0, -1.958, -0.349, -0.884 \\ (C, 0, -1.958, -0.984 \\ ($ -1.53\C,0,3.333,0.289,1.103\C,0,-3.333,-0.289,-3.516\H,0,0.183,-0.428, -5.484\H,0,-0.184,0.428,3.071\N,0,1.062,-1.297,2.542\N,0,-1.062,1.297, -4.955\N,0,0.926,0.441,1.215\N,0,-0.926,-0.441,-3.628\0,0,0.951,-2.052 ,3.566\0,0,-0.951,2.052,-5.979\0,0,-0.564,-1.557,-3.119\0,0,0.564,1.55 7,0.705\H,0,0.012,2.043,-2.711\H,0,-0.012,-2.043,0.297\H,0,0.466,-3.32 2,1.067\H,0,-0.466,3.322,-3.48\H,0,1.15,-2.919,-0.286\H,0,-1.15,2.919, -2.128\H,0,3.614,-2.026,2.117\H,0,-3.614,2.026,-4.53\H,0,3.388,-2.912, 0.845\H,0,-3.388,2.912,-3.258\H,0,2.716,-3.307,2.205\H,0,-2.716,3.307, -4.618\H,0,1.149,-0.781,-1.164\H,0,-1.149,0.781,-1.25\H,0,-2.713,0.813 ,-1.163\H,0,2.713,-0.813,-1.251\H,0,1.959,0.56,-1.192\H,0,-1.959,-0.56 ,-1.222\H,0,-3.373,-0.265,-4.476\H,0,3.373,0.265,2.063\H,0,-3.356,-1.2 01,-3.218\H,0,3.356,1.201,0.805\H,0,4.085,-0.185,0.74\H,0,-4.085,0.185 ,-3.154\\Version=EM64L-G09RevB.01\State=3-A\HF=-1068.4400956\S2=2.1037 83\S2-1=0.\S2A=2.004614\RMSD=5.210e-09\Dipole=-0.0004028,0.0000108,0.0 001825\Quadrupole=18.2975942,-1.4955214,-16.8020728,-3.9679858,0.69263 68,9.1279773\PG=C01 [X(C14H26N4O4)]\\@

PyrNN\*2 / C6F6 rung B model dyad (replace pyrene by H) - singlet UB3LYP/6-31G\*

1\1\GINC-SKYNET\Stability\UB3LYP\6-31G(d)\C14H26N4O4\LAHTI\03-Nov-2011 \0\\#P GFINPUT IOP(6/7=3) TEST UB3LYP/6-31G\* STABLE=OPT GUESS=(READ,MI X)\\Pyrene-NN Co-xtl Rung B model\\0,1\0,0,-2.267,5.818,4.34\0,0,-1.92 9,2.154,7.161\N,0,-2.392,5.046,5.351\N,0,-2.275,3.285,6.666\C,0,-1.829 ,3.826,5.506\C,0,-3.076,5.492,6.622\C,0,-3.379,4.112,7.266\C,0,-2.044, 6.317,7.393\H,0,-1.725,7.052,6.828\H,0,-1.288,5.745,7.641\H,0,-2.456,6 .682,8.203\C,0,-4.291,6.34,6.295\H,0,-4.787,6.531,7.119\H,0,-4.87,5.85 4,5.672\H,0,-4.002,7.181,5.885\C,0,-4.692,3.479,6.794\H,0,-4.745,3.527 ,5.816\H,0,-5.448,3.964,7.186\H,0,-4.723,2.541,7.077\C,0,-3.286,4.071, 8.782\H,0,-3.369,3.144,9.09\H,0,-4.008,4.61,9.168\H,0,-2.421,4.433,9.0 65\0,0,-6.77,9.552,4.695\0,0,-7.107,5.888,1.873\N,0,-6.645,8.781,3.684 \N,0,-6.761,7.02,2.368\C,0,-7.207,7.56,3.528\C,0,-5.96,9.227,2.412\C,0 ,-5.657,7.846,1.768\C,0,-6.993,10.051,1.641\H,0,-7.311,10.786,2.206\H, 0,-7.748,9.479,1.393\H,0,-6.58,10.417,0.831\C,0,-4.745,10.074,2.739\H, 0,-4.249,10.266,1.915\H,0,-4.166,9.588,3.363\H,0,-5.034,10.916,3.149\C ,0,-4.344,7.213,2.24\H,0,-4.291,7.261,3.218\H,0,-3.588,7.698,1.848\H,0 ,-4.313,6.275,1.957\C,0,-5.75,7.806,0.252\H,0,-5.667,6.879,-0.056\H,0, -5.028,8.344,-0.134\H,0,-6.615,8.168,-0.031\H,0,-1.153,3.313,4.813\H,0 ,-7.884,7.047,4.221\\Version=EM64L-G09RevB.01\State=1-A\HF=-1068.54505 07\S2=1.109114\S2-1=0.\S2A=0.859428\RMSD=6.011e-09\Dipole=0.1258496,1. 0251651,0.0873705\Quadrupole=-2.7836774,-7.562799,10.3464764,5.658677, -3.1294764,-6.1829852\PG=C01 [X(C14H26N4O4)]\\@

PyrNN\*2 / C6F6 rung B model dyad (replace pyrene by H) - triplet UB3LYP/6-31G\*

1\1\GINC-SKYNET\Stability\UB3LYP\6-31G(d)\C14H26N4O4(3)\LAHTI\02-Nov-2 011\0\\#P GFINPUT IOP(6/7=3) TEST UB3LYP/6-31G\* STABLE=OPT\\Pyrene-NN Co-xtl Rung B model\\0,3\0,0,-2.267,5.818,4.34\0,0,-1.929,2.154,7.161\ N,0,-2.392,5.046,5.351\N,0,-2.275,3.285,6.6666\C,0,-1.829,3.826,5.506\C ,0,-3.076,5.492,6.622\C,0,-3.379,4.112,7.266\C,0,-2.044,6.317,7.393\H, 0,-1.725,7.052,6.828\H,0,-1.288,5.745,7.641\H,0,-2.456,6.682,8.203\C,0 ,-4.291,6.34,6.295\H,0,-4.787,6.531,7.119\H,0,-4.87,5.854,5.672\H,0,-4 .002,7.181,5.885\C,0,-4.692,3.479,6.794\H,0,-4.745,3.527,5.816\H,0,-5. 448,3.964,7.186\H,0,-4.723,2.541,7.077\C,0,-3.286,4.071,8.782\H,0,-3.3 69,3.144,9.09\H,0,-4.008,4.61,9.168\H,0,-2.421,4.433,9.065\O,0,-6.77,9 .552,4.695\0,0,-7.107,5.888,1.873\N,0,-6.645,8.781,3.684\N,0,-6.761,7. 02,2.368\C,0,-7.207,7.56,3.528\C,0,-5.96,9.227,2.412\C,0,-5.657,7.846, 1.768\C,0,-6.993,10.051,1.641\H,0,-7.311,10.786,2.206\H,0,-7.748,9.479 ,1.393\H,0,-6.58,10.417,0.831\C,0,-4.745,10.074,2.739\H,0,-4.249,10.26 6,1.915\H,0,-4.166,9.588,3.363\H,0,-5.034,10.916,3.149\C,0,-4.344,7.21 3,2.24\H,0,-4.291,7.261,3.218\H,0,-3.588,7.698,1.848\H,0,-4.313,6.275, 1.957\C,0,-5.75,7.806,0.252\H,0,-5.667,6.879,-0.056\H,0,-5.028,8.344,-0.134\H,0,-6.615,8.168,-0.031\H,0,-1.153,3.313,4.813\H,0,-7.884,7.047, 4.221\\Version=EM64L-G09RevB.01\State=3-A\HF=-1068.545048\S2=2.109194\ S2-1=0.\S2A=2.005089\RMSD=9.840e-09\Dipole=0.1259893,1.0249854,0.08749 09\Quadrupole=-2.7835724,-7.5628624,10.3464349,5.6587351,-3.1294121,-6 .1829461\PG=C01 [X(C14H26N4O4)]\\@

Alpha-PyrIN model dyad (replace pyrene and methyls by H) - singlet UB97D/6-31+G\*

1\1\GINC-SKYNET\SP\UB97D\6-31+G(d)\C6H10N402\LAHTI\06-Mar-2011\0\\#P G
FINPUT IOP(6/7=3) UB97D/6-31+G(d) TEST GUESS=(READ,MIX)\\Pyrene-IN NO-ON contact (S-T xtl geom)\\0,1\C,0,-2.722,0.662,0.804\C,0,2.722,-0.66
2,-0.804\C,0,2.764,0.198,-2.098\C,0,-2.764,-0.198,2.098\H,0,0.134,1.43
4,2.382\H,0,-0.226,-1.353,-2.444\C,0,0.746,-0.933,-2.159\C,0,-0.813,0.
936,2.143\H,0,-2.564,-1.272,1.841\H,0,3.346,-1.584,-0.946\H,0,3.735,0.
023,-2.632\H,0,-3.735,-0.023,2.632\H,0,2.564,1.272,-1.841\H,0,2.929,-0
.01,0.086\H,0,-2.929,0.01,-0.086\H,0,-3.346,1.584,0.946\N,0,-1.64,0.33
5,2.921\N,0,1.64,-0.335,-2.921\N,0,1.281,-1.03,-0.825\N,0,-1.281,1.03,
0.825\O,0,0.666,-1.503,0.177\0,0,-0.666,1.503,-0.177\\Version=EM64L-G0
9RevB.01\State=1-A\HF=-603.5371774\S2=0.976501\S2-1=0.\S2A=0.122152\RM
SD=6.451e-09\Dipole=-0.0349822,0.0093073,-0.0259334\Quadrupole=14.3286
194,-1.4049456,-12.9236738,0.9339682,0.6123585,4.4313792\PG=C01 [X(C6H
10N402)]\\@

Alpha-PyrIN model dyad (replace pyrene and methyls by H) - triplet UB97D/6-31+G\*

1\1\GINC-SKYNET\SP\UB97D\6-31+G(d)\C6H10N402(3)\LAHTI\06-Mar-2011\0\\#
P GFINPUT IOP(6/7=3) UB97D/6-31+G(d) TEST\\Pyrene-IN NO--ON contact (S
-T xtl geom)\\0,3\C,0,-2.722,0.662,0.804\C,0,2.722,-0.662,-0.804\C,0,2
.764,0.198,-2.098\C,0,-2.764,-0.198,2.098\H,0,0.134,1.434,2.382\H,0,-0
.226,-1.353,-2.444\C,0,0.746,-0.933,-2.159\C,0,-0.813,0.936,2.143\H,0,
-2.564,-1.272,1.841\H,0,3.346,-1.584,-0.946\H,0,3.735,0.023,-2.632\H,0,
.3.735,-0.023,2.632\H,0,2.564,1.272,-1.841\H,0,2.929,-0.01,0.086\H,0,
-2.929,0.01,-0.086\H,0,-3.346,1.584,0.946\N,0,-1.64,0.335,2.921\N,0,1.
64,-0.335,-2.921\N,0,1.281,-1.03,-0.825\N,0,-1.281,1.03,0.825\O,0,0.66
6,-1.503,0.177\0,0,-0.666,1.503,-0.177\\Version=EM64L-G09RevB.01\State
=3-A\HF=-603.5362612\S2=2.017373\S2-1=0.\S2A=2.000171\RMSD=7.124e-09\D
ipole=-0.0470072,0.0170996,-0.0169064\Quadrupole=14.2923061,-1.438191,
-12.8541152,0.9632094,0.5771795,4.4317974\PG=C01 [X(C6H10N402)]\\@

Alpha-PyrNN model dyad (replace pyrene and methyls by H) - singlet UB97D/6-31+G\*

1\1\GINC-SKYNET\SP\UB97D\6-31+G(d)\C6H10N404\LAHTI\06-Mar-2011\0\\#P G
FINPUT IOP(6/7=3) UB97D/6-31+G(d) TEST GUESS=(READ,MIX)\\Pyrene-NN NO-ON contact (S-T xtl geom)\\0,1\C,0,-3.769,0.069,-4.982\C,0,-0.787,-2.
065,-1.788\C,0,-2.69,-0.828,-6.873\C,0,-1.866,-1.169,0.104\C,0,-2.862,
-2.037,-0.677\C,0,-1.694,0.04,-6.093\H,0,-0.025,-2.352,-2.522\H,0,-4.5
31,0.356,-4.248\H,0,-3.807,-1.458,-0.85\H,0,-0.748,-0.538,-5.919\H,0,2.957,-3.037,-0.178\H,0,-1.598,1.041,-6.591\H,0,-2.518,-1.909,-6.627\H
,0,-2.675,-0.532,-7.956\H,0,-1.88,-1.464,1.187\H,0,-2.037,-0.087,-0.14
2\N,0,-3.979,-0.365,-6.242\N,0,-0.577,-1.631,-0.527\N,0,-2.431,0.195,4.795\N,0,-2.125,-2.192,-1.975\0,0,-5.119,-0.5,-6.825\0,0,0.563,-1.494
,0.056\0,0,-2.71,-2.581,-3.05\0,0,-1.846,0.585,-3.72\\Version=EM64L-G0
9RevB.01\State=1-A\HF=-753.815552\S2=1.017398\S2-1=0.\S2A=0.24967\RMS
D=9.618e-09\Dipole=-0.0000732,-0.0020321,-0.0001123\Quadrupole=-10.552
9235,2.2312632,8.3216604,-2.4257613,-22.0672785,-3.1689674\PG=C01 [X(C
6H10N404)]\\@

Alpha-PyrNN model dyad (replace pyrene and methyls by H) - triplet UB97D/6-31+G\*

1\1\GINC-SKYNET\SP\UB97D\6-31+G(d)\C6H10N404(3)\LAHTI\06-Mar-2011\0\\#
P GFINPUT IOP(6/7=3) UB97D/6-31+G(d) TEST\\Pyrene-NN NO--ON contact (S
-T xtl geom)\\0,3\C,0,-3.769,0.069,-4.982\C,0,-0.787,-2.065,-1.788\C,0
,-2.69,-0.828,-6.873\C,0,-1.866,-1.169,0.104\C,0,-2.862,-2.037,-0.677\
C,0,-1.694,0.04,-6.093\H,0,-0.025,-2.352,-2.522\H,0,-4.531,0.356,-4.24
8\H,0,-3.807,-1.458,-0.85\H,0,-0.748,-0.538,-5.919\H,0,-2.957,-3.037,0.178\H,0,-1.598,1.041,-6.591\H,0,-2.518,-1.909,-6.627\H,0,-2.675,-0.5
32,-7.956\H,0,-1.88,-1.464,1.187\H,0,-2.037,-0.087,-0.142\N,0,-3.979,0.365,-6.242\N,0,-0.577,-1.631,-0.527\N,0,-2.431,0.195,-4.795\N,0,-2.1
25,-2.192,-1.975\O,0,-5.119,-0.5,-6.825\O,0,0.563,-1.494,0.056\O,0,-2.
71,-2.581,-3.05\O,0,-1.846,0.585,-3.72\\Version=EM64L-G09RevB.01\State
=3-A\HF=-753.8153488\S2=2.032707\S2-1=0.\S2A=2.000519\RMSD=2.800e-09\D
ipole=-0.000059,-0.002025,-0.000898\Quadrupole=-10.533596,2.1873294,8
.3462665,-2.4424338,-22.0005786,-3.1638463\PG=C01 [X(C6H10N404)]\\@

Beta-PyrNN model dyad (replace pyrene and methyls by H) - singlet UB97D/6-31+G\*

1\1\GINC-SKYNET\Stability\UB97D\6-31+G(d)\C14H26N404\LAHTI\29-Jul-2011 \0\\#P GFINPUT IOP(6/7=3) TEST SCF=DIRECT UB97D/6-31+G(d) STABLE=OPT\\ NN-NN close contact, beta-PyrNN, no Pyr\\0,1\N,0,-0.45,0.685,21.965\0, 0,-1.568,1.604,25.078\N,0,-0.948,1.188,24.041\0,0,-0.468,0.656,20.688\ C,0,0.614,-0.011,22.764\C,0,-1.398,1.22,22.768\C,0,0.487,0.76,24.104\C ,0,0.722,-0.068,25.347\H,0,0.206,-0.875,25.297\H,0,0.456,0.434,26.121\ H,0,1.654,-0.288,25.412\C,0,1.951,0.118,22.061\H,0,2.197,1.045,22.008\ H,0,1.883,-0.244,21.174\H,0,2.62,-0.364,22.553\C,0,0.19,-1.474,22.857\ H,0,-0.655,-1.535,23.31\H,0,0.851,-1.969,23.347\H,0,0.107,-1.841,21.97 3\C,0,1.296,2.061,24.142\H,0,1.125,2.567,23.344\H,0,2.232,1.853,24.194 \H,0,1.039,2.575,24.91\N,0,-3.688,-0.685,27.98\0,0,-2.57,-1.604,24.868 \N,0,-3.19,-1.188,25.905\0,0,-3.671,-0.656,29.257\C,0,-4.753,0.011,27. 182\C,0,-2.74,-1.22,27.178\C,0,-4.626,-0.76,25.842\C,0,-4.861,0.068,24 .598\H,0,-4.344,0.875,24.648\H,0,-4.594,-0.434,23.824\H,0,-5.793,0.288 ,24.533\C,0,-6.09,-0.118,27.885\H,0,-6.336,-1.045,27.937\H,0,-6.021,0. 244,28.771\H,0,-6.759,0.364,27.393\C,0,-4.329,1.474,27.088\H,0,-3.484, 1.535,26.636\H,0,-4.99,1.969,26.598\H,0,-4.245,1.841,27.972\C,0,-5.435 ,-2.061,25.804\H,0,-5.264,-2.567,26.601\H,0,-6.371,-1.853,25.752\H,0,-5.178,-2.575,25.035\H,0,-2.330749,1.690866,22.437121\H,0,-1.807458,-1. 69114,27.509071\\Version=EM64L-G09RevB.01\State=1-A\HF=-1067.7993996\S 2=1.008811\S2-1=0.\S2A=0.221509\RMSD=2.270e-09\Dipole=0.0003016,-0.000 417,0.0005761\Quadrupole=22.6330028,2.1898651,-24.8228679,-1.1842575,2 .5466182,1.1059322\PG=C01 [X(C14H26N4O4)]\\@

Beta-PyrNN model dyad (replace pyrene and methyls by H) - triplet UB97D/6-31+G\* 1\1\GINC-SKYNET\SP\UB97D\6-31+G(d)\C14H26N4O4(3)\LAHTI\29-Jul-2011\0\\ #P GFINPUT IOP(6/7=3) TEST SCF=DIRECT UB97D/6-31+G(d)\\NN-NN close con tact, beta-PyrNN, no Pyr\\0,3\N,0,-0.45,0.685,21.965\0,0,-1.568,1.604, 25.078\N,0,-0.948,1.188,24.041\0,0,-0.468,0.656,20.688\C,0,0.614,-0.01 1,22.764\C,0,-1.398,1.22,22.768\C,0,0.487,0.76,24.104\C,0,0.722,-0.068 ,25.347\H,0,0.206,-0.875,25.297\H,0,0.456,0.434,26.121\H,0,1.654,-0.28 8,25.412\C,0,1.951,0.118,22.061\H,0,2.197,1.045,22.008\H,0,1.883,-0.24 4,21.174\H,0,2.62,-0.364,22.553\C,0,0.19,-1.474,22.857\H,0,-0.655,-1.5 35,23.31\H,0,0.851,-1.969,23.347\H,0,0.107,-1.841,21.973\C,0,1.296,2.0 61,24.142\H,0,1.125,2.567,23.344\H,0,2.232,1.853,24.194\H,0,1.039,2.57 5,24.91\N,0,-3.688,-0.685,27.98\0,0,-2.57,-1.604,24.868\N,0,-3.19,-1.1 88,25.905\0,0,-3.671,-0.656,29.257\C,0,-4.753,0.011,27.182\C,0,-2.74,-1.22,27.178\C,0,-4.626,-0.76,25.842\C,0,-4.861,0.068,24.598\H,0,-4.344 ,0.875,24.648\H,0,-4.594,-0.434,23.824\H,0,-5.793,0.288,24.533\C,0,-6. 09,-0.118,27.885\H,0,-6.336,-1.045,27.937\H,0,-6.021,0.244,28.771\H,0, -6.759,0.364,27.393\C,0,-4.329,1.474,27.088\H,0,-3.484,1.535,26.636\H, 0,-4.99,1.969,26.598\H,0,-4.245,1.841,27.972\C,0,-5.435,-2.061,25.804\ H,0,-5.264,-2.567,26.601\H,0,-6.371,-1.853,25.752\H,0,-5.178,-2.575,25 .035\H,0,-2.330749,1.690866,22.437121\H,0,-1.807458,-1.69114,27.509071 \\Version=EM64L-G09RevB.01\State=3-A\HF=-1067.7990203\S2=2.02913\S2-1= 0.\S2A=2.00042\RMSD=7.063e-09\Dipole=0.0003793,-0.0003779,0.0004844\Qu adrupole=22.609546,2.1727677,-24.7823137,-1.1972674,2.5292104,1.109220 7\PG=C01 [X(C14H26N4O4)]\\@

PyrNN\*2 / C6F6 rail model dyad (replace pyrene by H) - singlet UB97D/6-31+G\*

1\1\GINC-SKYNET\SP\UB97D\6-31+G(d)\C14H26N4O4\LAHTI\06-Mar-2011\0\\#P GFINPUT IOP(6/7=3) UB97D/6-31+G(d) TEST GUESS=(READ,MIX)\\Pyrene-NN co C6F6 rail contact\\0,1\N,0,8.603,-7.075,2.422\0,0,8.241,-5.959,1.912\ H,0,7.494,-7.089,4.277\H,0,11.065,-10.428,2.052\H,0,11.033,-6.315,2.01 2\C,0,11.01,-7.227,2.31\H,0,11.762,-7.701,1.947\H,0,11.05,-7.251,3.269 \H,0,8.826,-8.297,0.043\C,0,8.426,-10.101,1.727\H,0,7.665,-9.559,1.504 \H,0,8.143,-10.839,2.273\H,0,8.827,-10.436,0.921\C,0,9.442,-9.261,2.49 2\H,0,7.494,0.428,4.277\H,0,10.393,-10.824,3.412\C,0,8.167,-7.604,3.58 3\N,0,8.739,-8.814,3.748\C,0,9.72,-7.885,1.838\0,0,8.628,-9.568,4.772\ H,0,11.291,-9.542,3.324\H,0,10.39,-8.329,-0.044\C,0,9.635,-7.865,0.323 \C,0,10.66,-10.09,2.853\H,0,9.636,-6.956,0.015\C,0,8.167,-0.087,3.583\ N,0,8.739,-1.297,3.748\0,0,8.628,-2.052,4.772\C,0,9.442,-1.745,2.492\C ,0,9.72,-0.368,1.838\N,0,8.603,0.441,2.422\0,0,8.241,1.557,1.912\C,0,8 .426,-2.585,1.727\H,0,7.665,-2.043,1.504\H,0,8.143,-3.322,2.273\H,0,8. 827,-2.919,0.921\C,0,10.66,-2.574,2.853\H,0,11.291,-2.026,3.324\H,0,11 .065,-2.912,2.052\H,0,10.393,-3.307,3.412\C,0,9.635,-0.349,0.323\H,0,8 .826,-0.781,0.043\H,0,10.39,-0.813,-0.044\H,0,9.636,0.56,0.015\C,0,11. 01,0.289,2.31\H,0,11.05,0.265,3.269\H,0,11.033,1.201,2.012\H,0,11.762, -0.185,1.947\\Version=EM64L-G09RevB.01\State=1-A\HF=-1067.7886123\S2=1 .029076\S2-1=0.\S2A=0.23325\RMSD=3.071e-09\Dipole=1.6945342,-1.513231, -1.7505637\Quadrupole=8.8620039,-6.5990905,-2.2629135,2.8301174,-1.908 3731,12.9400955\PG=C01 [X(C14H26N4O4)]\\@

PyrNN\*2 / C6F6 rail model dyad (replace pyrene by H) - triplet UB97D/6-31+G\*

1\1\GINC-SKYNET\SP\UB97D\6-31+G(d)\C14H26N404(3)\LAHTI\06-Mar-2011\0\\ #P GFINPUT IOP(6/7=3) UB97D/6-31+G(d) TEST\\Pyrene-NN co C6F6 rail con tact\\0,3\N,0,8.603,-7.075,2.422\0,0,8.241,-5.959,1.912\H,0,7.494,-7.0 89,4.277\H,0,11.065,-10.428,2.052\H,0,11.033,-6.315,2.012\C,0,11.01,-7 .227,2.31\H,0,11.762,-7.701,1.947\H,0,11.05,-7.251,3.269\H,0,8.826,-8. 297,0.043\C,0,8.426,-10.101,1.727\H,0,7.665,-9.559,1.504\H,0,8.143,-10 .839,2.273\H,0,8.827,-10.436,0.921\C,0,9.442,-9.261,2.492\H,0,7.494,0. 428,4.277\H,0,10.393,-10.824,3.412\C,0,8.167,-7.604,3.583\N,0,8.739,-8 .814,3.748\C,0,9.72,-7.885,1.838\O,0,8.628,-9.568,4.772\H,0,11.291,-9. 542,3.324\H,0,10.39,-8.329,-0.044\C,0,9.635,-7.865,0.323\C,0,10.66,-10 .09,2.853\H,0,9.636,-6.956,0.015\C,0,8.167,-0.087,3.583\N,0,8.739,-1.2 97,3.748\0,0,8.628,-2.052,4.772\C,0,9.442,-1.745,2.492\C,0,9.72,-0.368 ,1.838\N,0,8.603,0.441,2.422\0,0,8.241,1.557,1.912\C,0,8.426,-2.585,1. 727\H,0,7.665,-2.043,1.504\H,0,8.143,-3.322,2.273\H,0,8.827,-2.919,0.9 21\C,0,10.66,-2.574,2.853\H,0,11.291,-2.026,3.324\H,0,11.065,-2.912,2. 052\H,0,10.393,-3.307,3.412\C,0,9.635,-0.349,0.323\H,0,8.826,-0.781,0. 043\H,0,10.39,-0.813,-0.044\H,0,9.636,0.56,0.015\C,0,11.01,0.289,2.31\ H,0,11.05,0.265,3.269\H,0,11.033,1.201,2.012\H,0,11.762,-0.185,1.947\\ Version=EM64L-G09RevB.01\State=3-A\HF=-1067.7886126\S2=2.029132\S2-1=0 .\S2A=2.00042\RMSD=5.142e-09\Dipole=1.6945407,-1.5133106,-1.7505907\Qu adrupole=8.8624152,-6.5998097,-2.2626056,2.8304071,-1.9083149,12.94004 25\PG=C01 [X(C14H26N4O4)]\\@

PyrNN\*2 / C6F6 rung model dyad (replace pyrene by H) - singlet UB97D/6-31+G\*

1\1\GINC-SKYNET\SP\UB97D\6-31+G(d)\C14H26N4O4\LAHTI\06-Mar-2011\0\\#P GFINPUT IOP(6/7=3) UB97D/6-31+G(d) TEST GUESS=(READ,MIX)\\Pyrene-NN co C6F6 rung contact\\0,1\C,0,0.49,-0.087,2.377\C,0,-0.49,0.087,-4.79\C, 0,-1.765,1.745,-3.698\C,0,1.765,-1.745,1.285\C,0,-2.043,0.368,-3.045\C ,0,2.043,-0.368,0.631\C,0,0.749,-2.585,0.52\C,0,-0.749,2.585,-2.934\C, 0,-2.983,2.574,-4.059\C,0,2.983,-2.574,1.646\C,0,1.958,-0.349,-0.884\C ,0,-1.958,0.349,-1.53\C,0,3.333,0.289,1.103\C,0,-3.333,-0.289,-3.516\H ,0,0.183,-0.428,-5.484\H,0,-0.184,0.428,3.071\N,0,1.062,-1.297,2.542\N ,0,-1.062,1.297,-4.955\N,0,0.926,0.441,1.215\N,0,-0.926,-0.441,-3.628\ 0,0,0.951,-2.052,3.566\0,0,-0.951,2.052,-5.979\0,0,-0.564,-1.557,-3.11 9\0,0,0.564,1.557,0.705\H,0,0.012,2.043,-2.711\H,0,-0.012,-2.043,0.297 \H,0,0.466,-3.322,1.067\H,0,-0.466,3.322,-3.48\H,0,1.15,-2.919,-0.286\ H,0,-1.15,2.919,-2.128\H,0,3.614,-2.026,2.117\H,0,-3.614,2.026,-4.53\H ,0,3.388,-2.912,0.845\H,0,-3.388,2.912,-3.258\H,0,2.716,-3.307,2.205\H ,0,-2.716,3.307,-4.618\H,0,1.149,-0.781,-1.164\H,0,-1.149,0.781,-1.25\ H,0,-2.713,0.813,-1.163\H,0,2.713,-0.813,-1.251\H,0,1.959,0.56,-1.192\ H,0,-1.959,-0.56,-1.222\H,0,-3.373,-0.265,-4.476\H,0,3.373,0.265,2.063 \H,0,-3.356,-1.201,-3.218\H,0,3.356,1.201,0.805\H,0,4.085,-0.185,0.74\ H,0,-4.085,0.185,-3.154\\Version=EM64L-G09RevB.01\State=1-A\HF=-1067.7 954087\S2=1.028666\S2-1=0.\S2A=0.230961\RMSD=6.063e-09\Dipole=-0.00035 02,-0.0000268,0.0000623\Quadrupole=20.1846342,-1.1324628,-19.0521713,-4.3006087,1.1025746,9.4854012\PG=C01 [X(C14H26N4O4)]\\@

PyrNN\*2 / C6F6 rung model dyad (replace pyrene by H) - triplet UB97D/6-31+G\*

1\1\GINC-SKYNET\SP\UB97D\6-31+G(d)\C14H26N404(3)\LAHTI\06-Mar-2011\0\\ #P GFINPUT IOP(6/7=3) UB97D/6-31+G(d) TEST\\Pyrene-NN co C6F6 rung con tact\\0,3\C,0,0.49,-0.087,2.377\C,0,-0.49,0.087,-4.79\C,0,-1.765,1.745 ,-3.698\C,0,1.765,-1.745,1.285\C,0,-2.043,0.368,-3.045\C,0,2.043,-0.36 8,0.631\C,0,0.749,-2.585,0.52\C,0,-0.749,2.585,-2.934\C,0,-2.983,2.574 ,-4.059\C,0,2.983,-2.574,1.646\C,0,1.958,-0.349,-0.884\C,0,-1.958,0.34 9,-1.53\C,0,3.333,0.289,1.103\C,0,-3.333,-0.289,-3.516\H,0,0.183,-0.42 8,-5.484\H,0,-0.184,0.428,3.071\N,0,1.062,-1.297,2.542\N,0,-1.062,1.29 7,-4.955\N,0,0.926,0.441,1.215\N,0,-0.926,-0.441,-3.628\0,0,0.951,-2.0 52,3.566\0,0,-0.951,2.052,-5.979\0,0,-0.564,-1.557,-3.119\0,0,0.564,1. 557,0.705\H,0,0.012,2.043,-2.711\H,0,-0.012,-2.043,0.297\H,0,0.466,-3. 322,1.067\H,0,-0.466,3.322,-3.48\H,0,1.15,-2.919,-0.286\H,0,-1.15,2.91 9,-2.128\H,0,3.614,-2.026,2.117\H,0,-3.614,2.026,-4.53\H,0,3.388,-2.91 2,0.845\H,0,-3.388,2.912,-3.258\H,0,2.716,-3.307,2.205\H,0,-2.716,3.30 7,-4.618\H,0,1.149,-0.781,-1.164\H,0,-1.149,0.781,-1.25\H,0,-2.713,0.8 13,-1.163\H,0,2.713,-0.813,-1.251\H,0,1.959,0.56,-1.192\H,0,-1.959,-0. 56,-1.222\H,0,-3.373,-0.265,-4.476\H,0,3.373,0.265,2.063\H,0,-3.356,-1 .201,-3.218\H,0,3.356,1.201,0.805\H,0,4.085,-0.185,0.74\H,0,-4.085,0.1 85,-3.154\\Version=EM64L-G09RevB.01\State=3-A\HF=-1067.7954057\S2=2.02 8846\S2-1=0.\S2A=2.000413\RMSD=2.043e-09\Dipole=-0.0003494,-0.0000269, 0.0000638\Quadrupole=20.184151,-1.1322423,-19.0519087,-4.3007578,1.102 0654,9.485151\PG=C01 [X(C14H26N4O4)]\\@

PyrNN\*2 / C6F6 rung B model dyad (replace pyrene by H) - singlet UB97D/6-31+G\*

1\1\GINC-SKYNET\Stability\UB97D\6-31+G(d)\C14H26N4O4\LAHTI\03-Nov-2011 \0\\#P GFINPUT IOP(6/7=3) UB97D/6-31+G(d) TEST STABLE=OPT GUESS=(READ, MIX)\\Pyrene-NN Co-xtl Rung B model\\0,1\0,0,-2.267,5.818,4.34\0,0,-1. 929,2.154,7.161\N,0,-2.392,5.046,5.351\N,0,-2.275,3.285,6.666\C,0,-1.8 29,3.826,5.506\C,0,-3.076,5.492,6.622\C,0,-3.379,4.112,7.266\C,0,-2.04 4,6.317,7.393\H,0,-1.725,7.052,6.828\H,0,-1.288,5.745,7.641\H,0,-2.456 ,6.682,8.203\C,0,-4.291,6.34,6.295\H,0,-4.787,6.531,7.119\H,0,-4.87,5. 854,5.672\H,0,-4.002,7.181,5.885\C,0,-4.692,3.479,6.794\H,0,-4.745,3.5 27,5.816\H,0,-5.448,3.964,7.186\H,0,-4.723,2.541,7.077\C,0,-3.286,4.07 1,8.782\H,0,-3.369,3.144,9.09\H,0,-4.008,4.61,9.168\H,0,-2.421,4.433,9 .065\0,0,-6.77,9.552,4.695\0,0,-7.107,5.888,1.873\N,0,-6.645,8.781,3.6 84\N,0,-6.761,7.02,2.368\C,0,-7.207,7.56,3.528\C,0,-5.96,9.227,2.412\C ,0,-5.657,7.846,1.768\C,0,-6.993,10.051,1.641\H,0,-7.311,10.786,2.206\ H,0,-7.748,9.479,1.393\H,0,-6.58,10.417,0.831\C,0,-4.745,10.074,2.739\ H,0,-4.249,10.266,1.915\H,0,-4.166,9.588,3.363\H,0,-5.034,10.916,3.149 \C,0,-4.344,7.213,2.24\H,0,-4.291,7.261,3.218\H,0,-3.588,7.698,1.848\H ,0,-4.313,6.275,1.957\C,0,-5.75,7.806,0.252\H,0,-5.667,6.879,-0.056\H, 0,-5.028,8.344,-0.134\H,0,-6.615,8.168,-0.031\H,0,-1.153,3.313,4.813\H ,0,-7.884,7.047,4.221\\Version=EM64L-G09RevB.01\State=1-A\HF=-1067.902 8414\S2=1.029521\S2-1=0.\S2A=0.239447\RMSD=1.951e-09\Dipole=0.1204994, 1.1605124,0.0518544\Quadrupole=-3.4758588,-8.1093115,11.5851703,6.3755 338,-3.1507423,-6.7885063\PG=C01 [X(C14H26N4O4)]\\@

PyrNN\*2 / C6F6 rung B model dyad (replace pyrene by H) - triplet UB97D/6-31+G\*

1\1\GINC-SKYNET\Stability\UB3LYP\6-31G(d)\C14H26N4O4(3)\LAHTI\02-Nov-2 011\0\\#P GFINPUT IOP(6/7=3) TEST UB3LYP/6-31G\* STABLE=OPT\\Pyrene-NN Co-xtl Rung B model\\0,3\0,0,-2.267,5.818,4.34\0,0,-1.929,2.154,7.161\ N,0,-2.392,5.046,5.351\N,0,-2.275,3.285,6.6666\C,0,-1.829,3.826,5.506\C ,0,-3.076,5.492,6.622\C,0,-3.379,4.112,7.266\C,0,-2.044,6.317,7.393\H, 0,-1.725,7.052,6.828\H,0,-1.288,5.745,7.641\H,0,-2.456,6.682,8.203\C,0 ,-4.291,6.34,6.295\H,0,-4.787,6.531,7.119\H,0,-4.87,5.854,5.672\H,0,-4 .002,7.181,5.885\C,0,-4.692,3.479,6.794\H,0,-4.745,3.527,5.816\H,0,-5. 448,3.964,7.186\H,0,-4.723,2.541,7.077\C,0,-3.286,4.071,8.782\H,0,-3.3 69,3.144,9.09\H,0,-4.008,4.61,9.168\H,0,-2.421,4.433,9.065\O,0,-6.77,9 .552,4.695\0,0,-7.107,5.888,1.873\N,0,-6.645,8.781,3.684\N,0,-6.761,7. 02,2.368\C,0,-7.207,7.56,3.528\C,0,-5.96,9.227,2.412\C,0,-5.657,7.846, 1.768\C,0,-6.993,10.051,1.641\H,0,-7.311,10.786,2.206\H,0,-7.748,9.479 ,1.393\H,0,-6.58,10.417,0.831\C,0,-4.745,10.074,2.739\H,0,-4.249,10.26 6,1.915\H,0,-4.166,9.588,3.363\H,0,-5.034,10.916,3.149\C,0,-4.344,7.21 3,2.24\H,0,-4.291,7.261,3.218\H,0,-3.588,7.698,1.848\H,0,-4.313,6.275, 1.957\C,0,-5.75,7.806,0.252\H,0,-5.667,6.879,-0.056\H,0,-5.028,8.344,-0.134\H,0,-6.615,8.168,-0.031\H,0,-1.153,3.313,4.813\H,0,-7.884,7.047, 4.221\\Version=EM64L-G09RevB.01\State=3-A\HF=-1068.545048\S2=2.109194\ S2-1=0.\S2A=2.005089\RMSD=9.840e-09\Dipole=0.1259893,1.0249854,0.08749 09\Quadrupole=-2.7835724,-7.5628624,10.3464349,5.6587351,-3.1294121,-6 .1829461\PG=C01 [X(C14H26N4O4)]\\@

#### Spin Density - PyrNN, EPR-II method

Mulliken atomic spin densities:

| 1        | С      | -0.224814 |
|----------|--------|-----------|
| 2        | С      | -0.013570 |
| 3        | С      | -0.011896 |
| 4        | С      | 0.018679  |
| 5        | С      | -0.000379 |
| 6        | С      | -0.000509 |
| 7        | C      | 0.016773  |
| 8        | C      | 0.027645  |
| 10       | C      | -0.015133 |
| 11       | C      | 0.009337  |
| 12       | c      | -0.013233 |
| 13       | c      | -0.011083 |
| 14       | c      | 0.003317  |
| 15       | C      | -0.006377 |
| 16       | C      | 0.003516  |
| 17       | С      | -0.006660 |
| 18       | С      | 0.003609  |
| 19       | С      | -0.007572 |
| 20       | С      | 0.011422  |
| 21       | С      | -0.022408 |
| 22       | С      | 0.006267  |
| 23       | С      | -0.002625 |
| 24       | Η      | 0.000519  |
| 25       | Η      | -0.000583 |
| 26       | Н      | -0.000280 |
| 27       | Н      | 0.000526  |
| 28       | Н      | 0.000281  |
| 29       | Н      | -0.000154 |
| 30       | н      | 0.000302  |
| 31<br>22 | H<br>U | 0.000272  |
| 32<br>33 | п      | -0.000629 |
| 33       | N      | 0.265112  |
| 35       | 0      | 0 351403  |
| 36       | 0      | 0.327934  |
| 37       | н      | -0.000667 |
| 38       | Н      | 0.000262  |
| 39       | Н      | -0.000312 |
| 40       | Н      | 0.000056  |
| 41       | Н      | -0.000582 |
| 42       | Н      | -0.000169 |
| 43       | Н      | 0.000143  |
| 44       | Η      | -0.000559 |
| 45       | Η      | -0.000183 |
| 46       | Η      | -0.000780 |
| 47       | Н      | 0.000463  |
| 48       | Н      | -0.000197 |



Sum of Mulliken atomic spin densities = 1.00000

| Teotropic | Formi | Contact | Couplings |
|-----------|-------|---------|-----------|
| ISOLIOPIC | rermt | CONLACT | couprings |

|    | Atom  | a.u.     | MegaHertz | Gauss     | 10(-4) cm-1 |
|----|-------|----------|-----------|-----------|-------------|
| 1  | C(13) | -0.03674 | -41.30081 | -14.73716 | -13.77647   |
| 2  | C(13) | -0.00488 | -5.48054  | -1.95559  | -1.82811    |
| 3  | C(13) | -0.00456 | -5.12489  | -1.82869  | -1.70948    |
| 4  | C(13) | 0.00888  | 9.98765   | 3.56384   | 3.33152     |
| 5  | C(13) | 0.00174  | 1.95318   | 0.69694   | 0.65151     |
| 6  | C(13) | 0.00135  | 1.52116   | 0.54279   | 0.50740     |
| 7  | C(13) | 0.00780  | 8.76989   | 3.12932   | 2.92532     |
| 8  | C(13) | 0.00841  | 9.44979   | 3.37192   | 3.15211     |
| 9  | C(13) | -0.00648 | -7.28766  | -2.60042  | -2.43090    |
| 10 | C(13) | 0.00071  | 0.79606   | 0.28405   | 0.26554     |
| 11 | C(13) | -0.00145 | -1.62884  | -0.58121  | -0.54332    |
| 12 | C(13) | 0.00097  | 1.08612   | 0.38755   | 0.36229     |
| 13 | C(13) | -0.00083 | -0.93343  | -0.33307  | -0.31136    |
| 14 | C(13) | 0.00072  | 0.80530   | 0.28735   | 0.26862     |
| 15 | C(13) | -0.00052 | -0.58006  | -0.20698  | -0.19349    |
| 16 | C(13) | 0.00048  | 0.53684   | 0.19156   | 0.17907     |
| 17 | C(13) | -0.00052 | -0.58917  | -0.21023  | -0.19653    |
| 18 | C(13) | 0.00055  | 0.62141   | 0.22173   | 0.20728     |
|    |       |          |           |           |             |

| 19 | C(13) | -0.00048 | -0.53678  | -0.19154 | -0.17905 |
|----|-------|----------|-----------|----------|----------|
| 20 | C(13) | 0.00041  | 0.45792   | 0.16340  | 0.15274  |
| 21 | C(13) | -0.00642 | -7.21729  | -2.57531 | -2.40743 |
| 22 | C(13) | 0.00093  | 1.04227   | 0.37191  | 0.34766  |
| 23 | C(13) | -0.00060 | -0.66982  | -0.23901 | -0.22343 |
| 24 | H(1)  | 0.00026  | 1.17814   | 0.42039  | 0.39298  |
| 25 | H(1)  | -0.00022 | -0.96597  | -0.34468 | -0.32221 |
| 26 | H(1)  | -0.00009 | -0.38293  | -0.13664 | -0.12773 |
| 27 | H(1)  | 0.00016  | 0.70951   | 0.25317  | 0.23667  |
| 28 | H(1)  | 0.00009  | 0.40239   | 0.14358  | 0.13422  |
| 29 | H(1)  | -0.00004 | -0.19774  | -0.07056 | -0.06596 |
| 30 | H(1)  | 0.00009  | 0.42439   | 0.15143  | 0.14156  |
| 31 | H(1)  | 0.0008   | 0.34068   | 0.12156  | 0.11364  |
| 32 | H(1)  | -0.00010 | -0.43478  | -0.15514 | -0.14503 |
| 33 | N(14) | 0.04708  | 15.21196  | 5.42801  | 5.07416  |
| 34 | N(14) | 0.04387  | 14.17403  | 5.05765  | 4.72795  |
| 35 | 0(17) | 0.04483  | -27.17361 | -9.69622 | -9.06414 |
| 36 | 0(17) | 0.04199  | -25.45127 | -9.08165 | -8.48963 |
| 37 | H(1)  | -0.00041 | -1.83312  | -0.65410 | -0.61146 |
| 38 | H(1)  | 0.00041  | 1.83605   | 0.65515  | 0.61244  |
| 39 | H(1)  | -0.00023 | -1.03648  | -0.36984 | -0.34573 |
| 40 | H(1)  | -0.00012 | -0.53177  | -0.18975 | -0.17738 |
| 41 | H(1)  | -0.00014 | -0.64563  | -0.23038 | -0.21536 |
| 42 | H(1)  | -0.00011 | -0.49373  | -0.17617 | -0.16469 |
| 43 | H(1)  | -0.00010 | -0.45795  | -0.16341 | -0.15275 |
| 44 | H(1)  | -0.00015 | -0.66060  | -0.23572 | -0.22035 |
| 45 | H(1)  | -0.00011 | -0.48489  | -0.17302 | -0.16174 |
| 46 | H(1)  | -0.00037 | -1.66727  | -0.59492 | -0.55614 |
| 47 | H(1)  | 0.00033  | 1.46630   | 0.52321  | 0.48910  |
| 48 | H(1)  | -0.00021 | -0.92985  | -0.33179 | -0.31016 |

#### Spin Density - PyrIN, syn conformer, EPR-II method

Mulliken atomic spin densities:

1 1 С -0.106245 2 С -0.005477 3 С -0.009257 С 4 0.025204 5 С -0.000006 6 С 0.014363 7 С 0.001630 8 С 0.018846 9 С -0.009216 10 С 0.005248 11 С -0.006399 12 С 0.003235 13 С -0.004753 14С 0.001638 С 15 -0.003323 16 С 0.001832 17 С -0.003490 С 18 0.002301 С 19 -0.005851 20 С 0.011154 21 С -0.016950 С 22 0.004441 23 С -0.001658 Н 24 -0.000093 25 Н 0.000701 26 -0.000005 Н 27 Н 0.002172 28 Η -0.000887 29 Н -0.00077430 Н -0.000067 31 Η -0.000905 32 Η -0.000333 33 Η 0.001115 34 Н -0.000749 35 -0.000931 Η 36 Н 0.000263



| 37 | Н | -0.000303 |
|----|---|-----------|
| 38 | Н | -0.000126 |
| 39 | Н | 0.000226  |
| 40 | Н | 0.000144  |
| 41 | Н | -0.000080 |
| 42 | Н | 0.000155  |
| 43 | Н | 0.000165  |
| 44 | Н | -0.001124 |
| 45 | Ν | 0.329826  |
| 46 | Ν | 0.258098  |
| 47 | 0 | 0.496246  |

#### Isotropic Fermi Contact Couplings

| -  | Atom  | a.u.     | MegaHertz | Gauss     | 10(-4) cm-1 |
|----|-------|----------|-----------|-----------|-------------|
| 1  | C(13) | -0.02339 | -26.29593 | -9.38304  | -8.77138    |
| 2  | C(13) | -0.00708 | -7.95879  | -2.83989  | -2.65477    |
| 3  | C(13) | -0.00447 | -5.02948  | -1.79464  | -1.67765    |
| 4  | C(13) | 0.01678  | 18.86339  | 6.73093   | 6.29215     |
| 5  | C(13) | 0.00350  | 3.93569   | 1.40435   | 1.31280     |
| 6  | C(13) | 0.00933  | 10.48962  | 3.74296   | 3.49896     |
| 7  | C(13) | 0.00314  | 3.52740   | 1.25866   | 1.17661     |
| 8  | C(13) | 0.00357  | 4.01264   | 1.43181   | 1.33847     |
| 9  | C(13) | -0.00444 | -4.99020  | -1.78063  | -1.66455    |
| 10 | C(13) | 0.00012  | 0.13634   | 0.04865   | 0.04548     |
| 11 | C(13) | -0.00063 | -0.71298  | -0.25441  | -0.23782    |
| 12 | C(13) | 0.00043  | 0.48780   | 0.17406   | 0.16271     |
| 13 | C(13) | -0.00037 | -0.41581  | -0.14837  | -0.13870    |
| 14 | C(13) | 0.00033  | 0.37238   | 0.13287   | 0.12421     |
| 15 | C(13) | -0.00026 | -0.29695  | -0.10596  | -0.09905    |
| 16 | C(13) | 0.00025  | 0.28141   | 0.10041   | 0.09387     |
| 17 | C(13) | -0.00027 | -0.30593  | -0.10916  | -0.10205    |
| 18 | C(13) | 0.00028  | 0.31248   | 0.11150   | 0.10423     |
| 19 | C(13) | -0.00027 | -0.30373  | -0.10838  | -0.10131    |
| 20 | C(13) | -0.00007 | -0.07738  | -0.02761  | -0.02581    |
| 21 | C(13) | -0.00301 | -3.38670  | -1.20846  | -1.12968    |
| 22 | C(13) | 0.00043  | 0.48108   | 0.17166   | 0.16047     |
| 23 | C(13) | -0.00028 | -0.31013  | -0.11066  | -0.10345    |
| 24 | н(1)  | -0.00009 | -0.38701  | -0.13810  | -0.12909    |
| 25 | н(1)  | 0.00038  | 1.68283   | 0.60047   | 0.56133     |
| 26 | н(1)  | -0.00003 | -0.11620  | -0.04146  | -0.03876    |
| 27 | н(1)  | 0.00088  | 3.92844   | 1.40177   | 1.31039     |
| 28 | н(1)  | -0.00023 | -1.04639  | -0.37338  | -0.34904    |
| 29 | н(1)  | -0.00017 | -0.76419  | -0.27268  | -0.25491    |
| 30 | H(1)  | -0.00012 | -0.51504  | -0.18378  | -0.17180    |
| 31 | H(1)  | -0.00015 | -0.66224  | -0.23630  | -0.22090    |
| 32 | H(1)  | -0.00015 | -0.64954  | -0.23177  | -0.21666    |
| 33 | H(1)  | 0.00059  | 2.64567   | 0.94404   | 0.88250     |
| 34 | Н(1)  | -0.00024 | -1.08820  | -0.38830  | -0.36298    |
| 35 | H(1)  | -0.00034 | -1.52843  | -0.54538  | -0.50983    |
| 36 | H(1)  | 0.00017  | 0.74243   | 0.26492   | 0.24765     |
| 37 | H(1)  | -0.00008 | -0.37691  | -0.13449  | -0.12572    |
| 38 | H(1)  | -0.00004 | -0.17863  | -0.06374  | -0.05958    |
| 39 | H(1)  | 0.00007  | 0.30562   | 0.10905   | 0.10194     |
| 40 | H(1)  | 0.00005  | 0.20719   | 0.07393   | 0.06911     |
| 41 | H(1)  | -0.00002 | -0.10162  | -0.03626  | -0.03390    |
| 42 | Н(1)  | 0.00005  | 0.22149   | 0.07903   | 0.07388     |
| 43 | H(1)  | 0.00005  | 0.21192   | 0.07562   | 0.07069     |
| 44 | Н(1)  | -0.00006 | -0.28925  | -0.10321  | -0.09648    |
| 45 | N(14) | 0.05550  | 17.93187  | 6.39854   | 5.98143     |
| 46 | N(14) | 0.03161  | 10.21388  | 3.64457   | 3.40699     |
| 47 | 0(17) | 0.05964  | -36.15201 | -12.89994 | -12.05901   |
|    |       |          |           |           |             |

S23

Mulliken atomic spin densities: 1

| 1         | С      | -0.006990 |
|-----------|--------|-----------|
| 2         | С      | 0.005085  |
| 3         | С      | -0.007100 |
| 4         | С      | 0.004011  |
| 5         | С      | -0.005964 |
| 6         | С      | 0.002078  |
| 7         | С      | -0.004279 |
| 8         | С      | 0.002372  |
| 9         | С      | -0.004609 |
| 10        | С      | 0.002272  |
| 11        | С      | -0.004931 |
| 12        | С      | 0.026835  |
| 13        | С      | 0.005049  |
| 14        | С      | -0.006945 |
| 15        | С      | 0.002517  |
| 16        | С      | -0.001101 |
| 17        | С      | 0.000401  |
| 18        | С      | -0.010985 |
| 19        | С      | 0.015131  |
| 20        | С      | 0.001964  |
| 21        | С      | -0.097412 |
| 22        | С      | 0.004858  |
| 23        | С      | -0.006259 |
| 24        | Н      | -0.000338 |
| 25        | Н      | -0.000163 |
| 26        | Н      | 0.000280  |
| 27        | Н      | 0.000192  |
| 28        | Н      | -0.000103 |
| 29        | Н      | 0.000204  |
| 30        | Н      | 0.000244  |
| 31        | Н      | 0.000177  |
| 32        | Н      | -0.000968 |
| 33        | Н      | -0.000791 |
| 34        | Н      | 0.000440  |
| 35        | H      | -0.000/29 |
| 30        | н      | 0.000068  |
| 3/        | H      | -0.000269 |
| 38        | H      | -0.000493 |
| 39        | п      | 0.000761  |
| 40<br>11  | п      | -0.000001 |
| 41        | п<br>u | 0.000001  |
| +2<br>//3 | ц      | 0 0000551 |
|           | ц      | 0 000310  |
| 45        | N      | 0 334842  |
| 46        | N      | 0.262262  |
| 47        | 0      | 0.488110  |
|           | -      |           |



Sum of Mulliken atomic spin densities = 1.00000

Isotropic Fermi Contact Couplings

|    | Atom  | a.u.     | MegaHertz | Gauss    | 10(-4) cm-1 |
|----|-------|----------|-----------|----------|-------------|
| 1  | C(13) | -0.00751 | -8.44373  | -3.01293 | -2.81652    |
| 2  | C(13) | 0.00048  | 0.53484   | 0.19085  | 0.17840     |
| 3  | C(13) | -0.00088 | -0.98473  | -0.35138 | -0.32847    |
| 4  | C(13) | 0.00054  | 0.60687   | 0.21655  | 0.20243     |
| 5  | C(13) | -0.00047 | -0.52302  | -0.18663 | -0.17446    |
| 6  | C(13) | 0.00044  | 0.49403   | 0.17628  | 0.16479     |
| 7  | C(13) | -0.00034 | -0.37846  | -0.13504 | -0.12624    |
| 8  | C(13) | 0.00033  | 0.36764   | 0.13118  | 0.12263     |
| 9  | C(13) | -0.00035 | -0.38906  | -0.13883 | -0.12978    |
| 10 | C(13) | 0.00044  | 0.49816   | 0.17775  | 0.16617     |
| 11 | C(13) | -0.00026 | -0.28915  | -0.10318 | -0.09645    |
| 12 | C(13) | 0.01372  | 15.41957  | 5.50209  | 5.14342     |
| 13 | C(13) | 0.00136  | 1.52529   | 0.54426  | 0.50878     |
| 14 | C(13) | -0.00226 | -2.54050  | -0.90651 | -0.84742    |
| 15 | C(13) | 0.00070  | 0.78139   | 0.27882  | 0.26064     |
| 16 | C(13) | -0.00033 | -0.37075  | -0.13229 | -0.12367    |
| 17 | C(13) | 0.00360  | 4.04728   | 1.44417  | 1.35003     |
| 18 | C(13) | -0.00486 | -5.46038  | -1.94840 | -1.82139    |
| 19 | C(13) | 0.00857  | 9.63199   | 3.43693  | 3.21288     |
| 20 | C(13) | 0.00307  | 3.44674   | 1.22988  | 1.14971     |
| 21 | C(13) | -0.02417 | -27.16806 | -9.69424 | -9.06229    |

| 22 | C(13) | 0.00347  | 3.90366   | 1.39292   | 1.30212   |
|----|-------|----------|-----------|-----------|-----------|
| 23 | C(13) | -0.00339 | -3.80803  | -1.35880  | -1.27022  |
| 24 | H(1)  | -0.00011 | -0.51039  | -0.18212  | -0.17025  |
| 25 | H(1)  | -0.00005 | -0.22258  | -0.07942  | -0.07424  |
| 26 | H(1)  | 0.00009  | 0.38112   | 0.13599   | 0.12713   |
| 27 | H(1)  | 0.00006  | 0.27388   | 0.09773   | 0.09136   |
| 28 | H(1)  | -0.00003 | -0.12787  | -0.04563  | -0.04265  |
| 29 | H(1)  | 0.00007  | 0.29243   | 0.10435   | 0.09754   |
| 30 | H(1)  | 0.00007  | 0.32291   | 0.11522   | 0.10771   |
| 31 | H(1)  | 0.00007  | 0.31714   | 0.11316   | 0.10579   |
| 32 | H(1)  | -0.00050 | -2.22382  | -0.79351  | -0.74179  |
| 33 | H(1)  | -0.00029 | -1.30738  | -0.46651  | -0.43609  |
| 34 | H(1)  | 0.00050  | 2.23885   | 0.79888   | 0.74680   |
| 35 | H(1)  | -0.00017 | -0.76290  | -0.27222  | -0.25448  |
| 36 | H(1)  | -0.00012 | -0.54976  | -0.19617  | -0.18338  |
| 37 | H(1)  | -0.00014 | -0.63607  | -0.22697  | -0.21217  |
| 38 | H(1)  | -0.00022 | -0.99688  | -0.35571  | -0.33252  |
| 39 | H(1)  | 0.00047  | 2.12190   | 0.75715   | 0.70779   |
| 40 | H(1)  | -0.00006 | -0.28760  | -0.10262  | -0.09593  |
| 41 | Н(1)  | -0.00003 | -0.12788  | -0.04563  | -0.04266  |
| 42 | H(1)  | 0.00028  | 1.27235   | 0.45401   | 0.42441   |
| 43 | H(1)  | -0.00007 | -0.29581  | -0.10555  | -0.09867  |
| 44 | H(1)  | 0.00017  | 0.74474   | 0.26574   | 0.24842   |
| 45 | N(14) | 0.05592  | 18.06715  | 6.44681   | 6.02655   |
| 46 | N(14) | 0.03238  | 10.46171  | 3.73300   | 3.48965   |
| 47 | 0(17) | 0.05953  | -36.08386 | -12.87562 | -12.03628 |