Electric Supplementary Information (ESI)

Morphological Variation of Hydroxyapatite in Aqueous Solution Based on Simulated Body Huid

Toru Kobayashi,^a Shohei Ono,^a Sho Hirakura,^a Yuya Oaki,^a and Hiroaki Imai^{*a}

^aDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan.

Figure S1. FTIR spectra of a seed (a) and HAp crystals prepared in the SBF-based solution (b,c,d).

All the absorption bands are assigned to the vibration of HAp crystal.^{35,36}

(1) 561 Triply degenerated bending mode, v_{4c} , of the O–P–O bonds of the phosphate group

(2) 574 Triply degenerated bending mode, ν_{4b} , of the O–P–O bonds of the phosphate group

(3) 602 Triply degenerated bending mode, ν_{4a} , of the O–P–O bonds of the phosphate group

(4) 631 Librational mode, v_L , of the hydroxyl group

(5) 875 Characteristic peak of hydrogen phosphate group (nondistinguishable peak)

(6) 962 Nondegenerated symmetric stretching mode, v_L , of the P–O bonds of the phosphate group

(7) 1032 Triply degenerated asymmetric stretching mode, v_{3c} , of the P–O bond of the phosphate group

(8) 1046 Triply degenerated asymmetric stretching mode, v_{3b} , of the P–O bond of the phosphate group

(9) 1087 Triply degenerated asymmetric stretching mode, v_{3a} , of the P–O bond of the phosphate group

(10) 1430 Stretching mode (v_1) of the CO₃²⁻ group in B-type CAP

(11) 1465 Characteristic stretching mode (v1) of the $\mathrm{CO_3^{2-}}$ group in A-type CAP

(12) 1630 Bending mode, v_2 for water associated with HAp