Supporting Information for

Semiconductor monolayer assemblies with oriented crystal faces

Guijun Ma^{a,b}, Tsuyoshi Takata^a, Masao Katayama^a, Fuxiang Zhang^a, Yosuke Moriya^a,

Kazuhiro Takanabe^b, Jun Kubota^a, Kazunari Domen^a*

^a Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo,

Bunkyo-ku, Tokyo 113-8656, Japan

^b KAUST Catalysis Center, King Abdullah University of Science and Technology

(KAUST), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia

Tel: (+81) -3-5841-1148, Fax: (+81) -3-5841-8838,

E-mail address: domen@chemsys.t.u-tokyo.ac.jp (K. Domen)

*To whom correspondence should be addressed

This supplementary information includes:

Supplementary Methods Supplementary Tables 1–2

Supplementary Methods

Commercialized products of TiO₂ (rutile), SrTiO₃ and ZnO.

TiO₂ (Rutile) is from Wako Pure Chemical Industries, Ltd. with a purity of 99%. SrTiO₃ is from Kojundo Chemical Laboratory Co., Ltd. with a purity of 99%. ZnO is from Kanto Chemical Co., Inc. with a purity of 99%.

Synthesis of BaTaO₂N powder.

BaTaO₂N powder was prepared by a conventional nitridation method. BaCO₃ and Ta₂O₅ powders purchased from Kanto Chemical Co. and High Purity Chemical Co., respectively, were mixed by grinding in an agate mortar with a molar ratio of 2:1. The mixture was loaded into an alumina boat and subsequently inserted into the center of a horizontally placed alumina tube furnace with an inner diameter of 24 mm. Then, the sample was heated under dry NH₃ flow at 200 mL min-1 at 1173 K for 20 h with intermediate grinding. The obtained sample will be referred to as BaTaO₂N(SSR). Post-treatment of BaTaO₂N(SSR) was carried out as the next step. A flux of NaCl was added to BaTaO₂N(SSR), and then mixed by grinding in an agate mortar. Then, the mixture was subjected to heat-treatment under dry NH₃ flow at 100 mL min-1 in a tubular furnace at 1073 K. The final products were washed with distilled water to remove residual flux.

Synthesis of small-particle LaTiO₂N powder.

All of the reagents were analytical grade and used without further purification. The oxide precursor of $La_2Ti_2O_7$ was prepared by a polymerized complex (PC) method², and then $LaTiO_2N$ was obtained by heating $La_2Ti_2O_7$ under NH₃ flow (200 mL min⁻¹) at 950 °C for 15 h.

Synthesis of large-particle LaTiO₂N powder.

All of the reagents were analytical grade and used without further purification. The oxide precursor of $La_2Ti_2O_7$ was prepared by molten salt³. In a typical preparation procedure, La_2O_3 and TiO₂ were mixed in a molar ratio of 1:2 and a salt of composition 50 mol% NaC1 and 50 mol% KCI was then added, constituting 50 wt% of the total reaction mixture. The mixture was then heated up to 1150 °C at a rate of 10 °C/min and maintained at 1150 °C for 5 hours, the temperature was cooled down to 800 °C at 10 °C/min and then cooled down to room temperature naturally. The calcined mixture was added into water to dissolve the salt. Crystallized $La_2Ti_2O_7$ powder was obtained by filtrating the above aqueous solution and then dried at 200 °C for using. To prepare $LaTiO_2N$, the $La_2Ti_2O_7$ precursor was nitrided at 950 °C for 15 h under a NH₃ flow.

Characterization of products

The as-prepared samples were characterized by X-ray powder diffraction (XRD, Geiger-flex RAD-B, Rigaku; Cu Kα) and field-emission scanning electron microscopy (FE-SEM; S-4700, Hitachi).

References:

- [1] (a) M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani, K. Domen, Chem. Phys. Lett. 452 (2008) 120;
 - (b) M. Higashi, R. Abe, T. Takata, K. Domen, Chem. Mater. 21 (2009) 1543.
- [2] A. Kasahara, K. Nukumizu, G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Phys. Chem. A 106 (2002) 6750.
- [3] (a) P. A. Fuierer, R. E. Newnham, J. Am. Ceram. Soc. 74 (1991) 2876;
 (b) C. L. Paven-Thivet, A. Ishikawa, A. Ziani, L. L. Gendre, M. Yoshida, J. Kubota, F. Tessier, K. Domen, J. Phys. Chem. C 113 (2009) 6156.

Supplementary table 1: Calculated ratio of relative peak intensity of the XRD showed in

fig.2

	<i>I</i> ₁₀₁ : <i>I</i> ₁₁₀	<i>I</i> ₁₁₁ : <i>I</i> ₁₁₀	<i>I</i> ₂₁₁ : <i>I</i> ₁₁₀	<i>I</i> ₂₂₀ : <i>I</i> ₁₁₀	<i>I</i> ₃₀₁ : <i>I</i> ₁₁₀
TiO ₂ powder	0.379	0.181	0.356	0.102	0.082
TiO ₂ /GP	0	0	0	0.051	0
	I_{100} : I_{110}	<i>I</i> ₁₁₁ : <i>I</i> ₁₁₀	I_{200} : I_{110}	<i>I</i> ₂₁₁ : <i>I</i> ₁₁₀	$I_{220}:I_{110}$
SrTiO ₃ powder	0.037	0.185	0.311	0.204	0.087
SrTiO ₃ /GP	3.23	0.467	15.3	0	0
	I_{002} : I_{100}	I_{101} : I_{100}	$I_{102}:I_{100}$	$I_{110}:I_{100}$	$I_{103}:I_{100}$
ZnO powder	0.671	1.57	0.285	0.388	0.288
ZnO/GP	0.041	0	0	0	0
	$I_{100}:I_{200}$	<i>I</i> ₁₁₀ : <i>I</i> ₂₀₀	<i>I</i> ₂₁₁ : <i>I</i> ₂₀₀	I ₂₂₀ :I ₂₀₀	<i>I</i> ₃₁₀ : <i>I</i> ₂₀₀
BaTaO ₂ N powder	0.266	5.07	1.02	0.311	0.218

Supplementary table 2: Calculated ratio of relative peak intensity of the XRD showed in

	<i>I</i> ₀₀₂ : <i>I</i> ₁₁₂	<i>I</i> ₂₀₂ : <i>I</i> ₁₁₂	<i>I</i> ₀₀₄ : <i>I</i> ₁₁₂	<i>I</i> ₁₁₄ : <i>I</i> ₁₁₂	<i>I</i> ₂₀₄ : <i>I</i> ₁₁₂
LaTiO ₂ N powder-LP	0.274	0.162	0.174	0.047	0.145
LaTiO ₂ N/GP-LP	0.012	0	0.008	0	0
LaTiO ₂ N powder-SP	0.186	0.165	0.177	0.034	0.150
LaTiO ₂ N/GP-SP	319	8.02	201	0	0

fig.4