Supporting Information

Synthesis of Mn₃O₄ nanowires and its transformation to LiMn₂O₄ polyhedrons,

application of LiMn₂O₄ as cathode in lithium-ion battery

Xing Zhang, ^a Zheng Xing, ^a Yang Yu, ^a Qianwen Li, ^a Kaibin Tang, ^a Tao Huang, ^a Yongchun Zhu, *^a Yitai Qian*^a, ^b and Dong Chen^c

^a Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of

Science and Technology of China, Hefei, Anhui 230026, People's Republic of China

^b Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, and School of

Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China

^c Jiangsu Highstar Battery Manufacturing CO., LTD.

Fig. S1 XRD patterns of products obtained at 200 °C for different reaction times: (a) 0.5 h, (b) 1.0 h, (c) 6 h and (d) 12 h.

Fig. S2 (a) and (b) are the XRD pattern and the TEM image of the brown precipitate, respectively.

Table 1 Experimental pH parameter for the synthesis of Mn₃O₄ materials

Fig. S3 The SEM images of obtained: (a) sample (4); (b) sample (5).

Fig. S4 The SEM images (a) N₂ protecting, (b) excess O₂.

Fig. S5 (a) SEM of the LiMn₂O₄ using Mn₃O₄ nanocubes as raw material at 750 °C for 6h. (b) Discharge curves at

0.1 C, 0.2 C and 0.5 C, the capacity are 79.8, 79.2 and 72.9 mAh/g, respectively.

Fig. S1 XRD patterns of products obtained at 200 °C for different reaction times: (a) 0.5 h, (b) 1.0 h, (c) 6 h and (d)

12 h.

Fig. S2 (a) and (b) are the XRD pattern and the TEM image of the brown precipitate, respectively.

Sample	MnSO ₄	H ₂ O/Na ₂ B ₄ O ₇	NaOH	pH value	morphology
(1)	-	15 mL (1 mmol)	-	10.07	-
(2)	15 mL (1 mmol)	15 mL (1 mmol)	-	8.98	-
(3)	15 mL (1 mmol)	15 mL (1 mmol)	15 mL (1 mmol)	9.69	nanowires
(4)	15 mL (1 mmol)	15 mL (0 mmol)	0.267 M (some)	9.69	particles
(5)	15 mL (1 mmol)	15 mL (0 mmol)	15 mL (1 mmol)	9.45	particles and nanorods

Table 1 Experimental pH parameter for the synthesis of Mn_3O_4 materials

Fig. S3 The SEM images of obtained: (a) sample (4); (b) sample (5).

Fig. S4 The SEM images (a) N₂ protecting, (b) excess O₂.

Fig. S5 (a) SEM of the $LiMn_2O_4$ using Mn_3O_4 nanocubes as raw material at 750 °C for 6h. (b) Discharge curves at 0.1 C, 0.2 C and 0.5 C, the capacity are 79.8, 79.2 and 72.9 mAh/g, respectively.