Supplementary materials

New series of 3,5-diamino-1,2,4-triazolium(1+) inorganic salts and their potential in crystal engineering of novel NLO materials

Irena Matulková^{a,b}, Jaroslav Cihelka^b, Michaela Pojarová^b, Karla Fejfarová^b, Michal Dušek^b, Přemysl Vaněk^b, Jan Kroupa^b, Radmila Krupková^b, Jan Fábry^b, Ivan Němec^a

^{*a*}Faculty of Science, Department of Inorganic Chemistry, Charles University in Prague, Hlavova 8, 128 40 Prague 2, Czech Republic ^{*b*}Institute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic

* Corresponding author. Phone: +420 221 951 247; Fax: +420 221 951 253

E-mail address: <u>irena.mat@atlas.cz</u>

2 Theta (°)	d (Å)	Intensity (a.u.)	2 Theta (°)	d (Å)	Intensity (a.u.)
10.05	8.80	1316.61	26.90	3.31	1735.16
13.96	6.34	20172.35	27.67	3.22	4260.94
15.57	5.69	2751.54	28.09	3.17	19840.11
15.75	5.62	2465.01	28.17	3.16	15016.86
16.29	5.44	6655.41	28.27	3.15	10287.42
18.53	4.79	2430.93	29.37	3.04	2980.08
18.81	4.71	3194.73	29.66	3.01	1581.87
19.05	4.66	3182.11	29.88	2.99	1204.31
19.46	4.56	1442.06	30.60	2.92	1392.48
20.23	4.39	4846.15	30.81	2.90	1648.96
21.03	4.22	1556.26	31.50	2.84	2370.27
21.60	4.11	2118.96	33.70	2.66	1222.57
22.94	3.87	873.44	34.28	2.61	1254.37
23.32	3.81	893.88	35.89	2.50	930.67
23.94	3.71	2599.96	37.33	2.41	1182.47
26.07	3.42	1289.66	57.21	1.61	993.15

TABLES Table 1S. Experimental powder data for dat₂SeO₄2H₂O.

Table 2S. Experimental powder data for dat₂SO₄2H₂O.

2 Theta (°)	d (Å)	Intensity (a.u.)	2 Theta (°)	d (Å)	Intensity (a.u.)
14.17	6.25	20100.00	27.94	3.19	3361.87
15.97	5.55	2949.50	28.45	3.13	43118.56
16.58	5.34	16007.78	29.80	3.00	3037.67
19.02	4.66	2259.90	31.05	2.88	1685.16
19.43	4.56	2426.42	31.17	2.87	1957.88
20.80	4.27	7939.40	32.09	2.79	3106.73
21.24	4.18	1567.67	33.98	2.64	1959.80
21.80	4.07	1708.62	42.19	2.14	1143.10
23.44	3.79	2044.32			

Table 3S. Experimental powder data for datClO₄.

2 Theta (°)	d (Å)	Intensity (a.u.)	2 Theta (°)	d (Å)	Intensity (a.u.)
9.86	3.72	4582.41	27.00	3.30	3042.63
17.58	5.04	7136.91	27.07	3.29	1805.62
19.74	4.49	13407.70	27.83	3.20	45409.19
20.27	4.38	3083.65	27.91	3.19	20140.00
21.72	4.09	3786.32	28.73	3.10	2898.17
22.88	3.88	2520.75	29.76	3.00	1373.69
23.71	3.75	6617.72	40.88	2.21	1259.92
24.04	3.70	2712.90	40.99	2.20	791.10
26.75	3.33	4347.39			

Table 4S. Experimental powder data for datNO₃.

2 Theta (°)	d (Å)	Intensity (a.u.)
23.88	3.72	2963.98
24.15	5.04	11499.83
24.50	4.49	8386.61
28.43	4.38	325675.75
28.51	4.09	148280.00

2 Theta (°)	d (Å)	Intensity (a.u.)	2 Theta (°)	d (Å)	Intensity (a.u.)
6.53	13.53	501.10	35.17	2.55	631.14
10.66	8.29	528.54	35.50	2.53	445.52
11.41	7.75	816.15	35.70	2.51	1145.77
12.42	7.12	580.15	36.25	2.48	337.06
12.98	6.81	729.84	36.73	2.45	506.42
13.58	6.52	552.63	37.09	2.42	997.44
14.29	6.19	1540.22	37.19	2.42	874.00
14.85	5.96	508.98	38.22	2.35	794.10
15.09	5.87	1439.04	38.32	2.35	488.95
16.31	5.43	484.80	38.66	2.33	381.22
17.94	4.94	1240.86	39.15	2.30	326.45
18.18	4.88	409.20	39.49	2.28	275.06
18.90	4.69	693.65	39.94	2.26	456.94
19.22	4.62	1777.69	41.41	2.18	308.12
20.19	4.39	1288.91	41.68	2.17	387.44
20.60	4.31	1163.30	42.47	2.13	462.54
20.92	4.24	935.85	43.00	2.10	247.53
21.46	4.14	336.12	44.15	2.05	344.32
22.71	3.91	249.45	44.27	2.04	270.10
23.17	3.84	1685.67	44.98	2.01	248.57
23.73	3.75	750.25	45.75	1.98	257.84
24.09	3.69	1026.43	46.34	1.96	473.23
24.24	3.67	1421.11	46.45	1.95	302.93
25.14	3.54	4594.71	46.71	1.94	228.07
25.58	3.48	2751.32	48.41	1.88	244.70
26.06	3.42	4858.17	48.78	1.87	301.28
27.55	3.24	2880.86	48.89	1.86	265.30
28.22	3.16	389.08	50.98	1.79	261.66
29.16	3.06	4975.37	51.50	1.77	351.00
29.50	3.03	1703.54	52.15	1.75	304.64
29.71	3.00	1171.96	52.69	1.74	284.21
30.79	2.90	1398.99	53.14	1.72	302.19
31.44	2.84	761.33	53.27	1.72	233.78
31.52	2.84	852.71	53.71	1.71	206.66
32.38	2.76	1284.26	55.29	1.66	279.75
32.68	2.74	500.52	55.43	1.66	216.56
32.88	2.72	342.46	56.72	1.62	290.77
33.40	2.68	542.60	57.01	1.61	302.00
34.08	2.63	535.76	57.15	1.61	265.88
34.25	2.62	1147.42	58.76	1.57	454.78
34.55	2.59	440.26	58.92	1.57	383.99
34.97	2.56	382.15			

Table 5S. Experimental powder data for dat₂Cl₂H₂O.

Table 6S. Experimental powder data for datH₂PO₃.

2 Theta (°)	d (Å)	Intensity (a.u.)	2 Theta (°)	d (Å)	Intensity (a.u.)
18.83	4.71	3875.83	25.91	3.44	1842.00
19.06	4.65	9195.69	29.63	3.01	9555.79
21.52	4.13	26799.41	29.70	3.01	4935.00
22.88	3.88	3671.35	31.05	2.88	3878.24
24.31	3.66	140585.20	31.13	2.87	1986.68
24.38	3.65	65822.20	32.49	2.75	3686.88
25.53	3.49	3890.10	32.58	2.75	2000.00

2 Theta (°)	d (Å)	Intensity (a.u.)	2 Theta (°)	d (Å)	Intensity (a.u.)
9.63	9.17	2441.12	29.90	2.99	1148.00
14.02	6.31	3377.22	30.19	2.96	2354.63
16.30	5.43	7762.22	31.10	2.87	1189.14
17.60	5.04	2859.25	32.85	2.72	2158.05
19.23	4.61	8841.91	32.94	2.72	2175.09
19.53	4.54	968.43	33.05	2.71	1265.24
20.06	4.42	6034.53	35.99	2.49	1354.80
21.42	4.14	1141.05	36.48	2.46	963.00
23.32	3.81	9861.90	38.91	2.31	1736.92
24.76	3.59	5130.52	39.97	2.25	1053.37
25.70	3.46	828.42	40.30	2.24	911.75
26.42	3.37	3337.84	46.09	1.97	1197.44
26.87	3.32	16973.42	50.08	1.82	889.74
27.49	3.24	2930.35	51.11	1.79	842.08
28.15	3.17	23993.14	54.52	1.68	1156.17
29.84	2.99	1556.88			

Table 78. Experimental powder data for $datH_2PO_4$.

Bond/Angle	Value	Angle	Value
Sel-O1	1.645(1)	O2-Se1-O4	108.29(7)
Sel-O2	1.639(1)	O3-Se1-O4	108.88(6)
Sel-O3	1.637(1)	N1-N2-C3	103.2(1)
Se1-O4	1.641(1)	N1-C5-N4	106.9(2)
O1W-H1W	0.82(2)	N1-C5-N6	126.7(2)
O1W-H2W	0.82(1)	N2-N1-C5	111.4(2)
O2W-H3W	0.81(2)	N2-C3-N4	112.0(2)
O2W-H4W	0.81(2)	N2-C3-N7	126.9(2)
N1-C5	1.321(2)	N4-C3-N7	121.2(2)
N2-N1	1.410(2)	N4-C5-N6	126.4(2)
N2-C3	1.304(3)	N8-N9-C10	103.1(1)
N4-C3	1.382(2)	N8-C12-N11	106.6(2)
N4-C5	1.350(2)	N8-C12-N13	127.1(2)
N6-C5	1.328(2)	N9-N8-C12	111.7(2)
N6-H6A	0.87(2)	N9-C10-N11	111.8(2)
N6-H6B	0.87(1)	N9-C10-N14	126.7(2)
N7-C3	1.339(2)	N11-C10-N14	121.5(2)
N7-H7A	0.87(2)	N11-C12-N13	126.3(2)
N7-H7B	0.86(1)	C3-N7-H7B	123(2)
N8-C12	1.321(2)	C3-N7-H7A	118(1)
N9-N8	1.410(2)	C5-N4-C3	106.6(2)
N9-C10	1.308(3)	C5-N6-H6A	120(1)
N11-C12	1.351(2)	C5-N6-H6B	122(2)
N11-C10	1.383(2)	C10-N14-H14A	119(1)
N13-C12	1.329(2)	C10-N14-H14B	120(2)
N13-H13A	0.87(2)	C12-N11-C10	106.9(2)
N13-H13B	0.88(1)	C12-N13-H13A	121(1)
N14-C10	1.344(2)	C12-N13-H13B	118(2)
N14-H14A	0.87(2)	H6A-N6-H6B	114(2)
N14-H14B	0.86(1)	H7B-N7-H7A	119(2)
01-Se1-O2	109.46(6)	H13A-N13-H13B	120(2)
01-Se1-O3	110.05(7)	H14A-N14-H14B	119(2)
01-Se1-O4	108.95(7)	H1W-O1W-H2W	100(3)
02-Se1-03	111.16(7)	H3W-O2W-H4W	102(2)
Hydrogen bonds			
D-HA	d (D-H)	d (AH) d (DA)	<(DHA)
O1W-H1WO3 ^a	0.82(2)	1.96(2) 2.777(2)	175(3)
O1W-H2WO2W	0.82(1)	2.09(1) 2.880(2)	163(3)
O2W-H3WO1	0.82(2)	2.02(2) 2.748(2)	148(2)
O2W-H4WO4 ^c	0.81(2)	2.08(2) 2.849(2)	157(2)
N1-H1AO3	0.87	1.88 2.734(2)	165
N4-H4AO2 ^b	0.87	1.90 2.698(2)	151
N6-H6AN2 ^d	0.87(2)	2.18(2) 3.028(2)	167(2)
N6-H6BSe1 ^d	0.87(1)	2.92(2) 3.650(2)	142(2)
N6-H6BO1 ^d	0.87(1)	2.06(1) 2.926(2)	175(2)
N7-H7AO1W ^e	0.88(2)	2.29(2) 3.040(2)	144(2)
N7-H7BO2 ^f	0.86(1)	2.02(1) 2.879(2)	177(2)
N8 H8A O2W ^g	0.87	1.00 $2.734(2)$	160
N11-H11A 04	0.87	1.93 $2.734(2)$	150
N13-H13A N9 ^d	0.87(2)	2.720(2) 2.21(2) $3.073(2)$	171(2)
N13-H13B O1W ^g	0.88(1)	2.21(2) $3.073(2)2.07(1)$ $2.008(2)$	161(2)
N14-H14A 01	0.86(1) 0.87(2)	2.07(1) $2.900(2)2.14(2)$ $3.000(2)$	177(2)
N14-H14B $O4^a$	0.86(1)	2.05(1) $2.914(2)$	174(2)
			1 1 1 4 1

Fable 8S. Selected bond	lengths (Å)	and angles (°)) for dat ₂ SeO ₄ 2H ₂ O.
--------------------------------	-------------	----------------	--

Equivalent positions: ^a -1+x, y, z, -1/2+z; ^b 2-x, -y, 1-z, 1/4+z, -1/2-z; ^c x, 1+y, z; ^d 1+x, y, z; ^e 1-x, 1-y, 1-z; ^f 1-x, -y, 1-z; ^g 1-x, 1-y, 2-z. Abbreviations: A, acceptor; D, donor.

S1-O1 1.476(1) N1-N2-C3 103.30 S1-O2 1.472(1) N1-C5-N4 106.40 S1-O3 1.474(1) N1-C5-N6 127.30 S1-O4 1.479(1) N2-N1-C5 111.40 O1W-H1W 0.87(3) N2-C3-N4 111.80 O1W-H2W 0.85(3) N2-C3-N7 126.70 O2W-H3W 0.78(3) N2-N1-H1A 120.44 O2W-H4W 0.84(2) N4-C3-N7 121.60 N1-H1A 0.84(2) N4-C5-N6 126.33 N1-C5 1.322(2) N8-N9-C10 103.33	 (1) (2) (2) (1) (2)
S1-O2 1.472(1) N1-C5-N4 106.4 S1-O3 1.474(1) N1-C5-N6 127.30 S1-O4 1.479(1) N2-N1-C5 111.4 O1W-H1W 0.87(3) N2-C3-N4 111.80 O1W-H2W 0.85(3) N2-C3-N7 126.70 O2W-H3W 0.78(3) N2-N1-H1A 120.44 O2W-H4W 0.84(2) N4-C3-N7 121.60 N1-H1A 0.84(2) N4-C5-N6 126.33 N1-C5 1.322(2) N8-N9-C10 103.33	 2) 2) 1) 2)
S1-O3 1.474(1) N1-C5-N6 127.30 S1-O4 1.479(1) N2-N1-C5 111.40 O1W-H1W 0.87(3) N2-C3-N4 111.80 O1W-H2W 0.85(3) N2-C3-N7 126.70 O2W-H3W 0.78(3) N2-N1-H1A 120.40 O2W-H4W 0.84(2) N4-C3-N7 121.60 N1-H1A 0.84(2) N4-C5-N6 126.30 N1-C5 1.322(2) N8-N9-C10 103.30	 (2) (1) (2) (2)
S1-O4 1.479(1) N2-N1-C5 111.4 O1W-H1W 0.87(3) N2-C3-N4 111.8 O1W-H2W 0.85(3) N2-C3-N7 126.7 O2W-H3W 0.78(3) N2-N1-H1A 120.4 O2W-H4W 0.84(2) N4-C3-N7 121.6 N1-H1A 0.84(2) N4-C5-N6 126.3 N1-C5 1.322(2) N8-N9-C10 103.3	 (1) (2)
O1W-H1W 0.87(3) N2-C3-N4 111.8 O1W-H2W 0.85(3) N2-C3-N7 126.7 O2W-H3W 0.78(3) N2-N1-H1A 120.4 O2W-H4W 0.84(2) N4-C3-N7 121.6 N1-H1A 0.84(2) N4-C5-N6 126.3 N1-C5 1.322(2) N8-N9-C10 103.3	 (2)
O1W-H2W 0.85(3) N2-C3-N7 126.74 O2W-H3W 0.78(3) N2-N1-H1A 120.44 O2W-H4W 0.84(2) N4-C3-N7 121.66 N1-H1A 0.84(2) N4-C5-N6 126.31 N1-C5 1.322(2) N8-N9-C10 103.31	 (2) (2) (2) (2) (2) (2) (2) (2)
O2W-H3W 0.78(3) N2-N1-H1A 120.4 O2W-H4W 0.84(2) N4-C3-N7 121.6 N1-H1A 0.84(2) N4-C5-N6 126.3 N1-C5 1.322(2) N8-N9-C10 103.3	 (2) (2) (2) (2) (2) (2)
O2W-H4W 0.84(2) N4-C3-N7 121.60 N1-H1A 0.84(2) N4-C5-N6 126.30 N1-C5 1.322(2) N8-N9-C10 103.30	(2) (2) (2) (2)
N1-H1A 0.84(2) N4-C5-N6 126.30 N1-C5 1.322(2) N8-N9-C10 103.30	(2) (2) (2)
N1-C5 1.322(2) N8-N9-C10 103.3	(2) (2)
	2)
N2-N1 1.410(2) N8-C12-N11 105.7	
N2-C3 1.305(2) N8-C12-N13 127.6	(2)
N4-H4A 0.87(2) N9-N8-H8A 118(1)
N4-C3 1.375(2) N9-N8-C12 112.10	(1)
N4-C5 1.354(2) N9-C10-N11 111.5	2)
N6-H6A 0.91(2) N9-C10-N14 127.1	2)
N6-H6B 0.82(2) N11-C10-N14 121.4	2)
N6-C5 1.322(3) N11-C12-N13 126.7	2)
N7-H7A 0.87(2) C3-N4-H4A 122(2)
N7-H7B 0.88(3) C3-N7-H7B 118(1)
N7-C3 1.335(3) C3-N7-H7A 121(2)
N8-H8A 0.87(2) C5-N4-C3 107.0	(1)
N8-C12 1.325(2) C5-N1-H1A 128(2)
N9-N8 1.405(2) C5-N4-H4A 128(2)
N9-C10 1.306(2) C5-N6-H6A 122(2)
N11-C12 1.355(2) C5-N6-H6B 120(1)
N11-C10 1.381(2) C10-N11-H11A 123(2)
N11-H11A 0.86(2) C10-N14-H14A 123(2)
N13-C12 1.318(3) C10-N14-H14B 120(2)
N13-H13A 0.81(2) C12-N11-C10 107.4	(1)
N13-H13B 0.90(2) C12-N8-H8A 129(1)
N14-C10 1.333(3) C12-N11-H11A 129(2)
N14-H14A 0.86(3) C12-N13-H13A 126(2)
N14-H14B 0.90(2) C12-N13-H13B 119(1)
OI-SI-O2 110.0/(7) H6A-N6-H6B 116(2)
01-S1-O3 109.28(8) H/B-N/-H/A 121(2)
01-S1-O4 109.11(7) H13A-N13-H13B 113(2)
O2-S1-O3 110.38(7) H14A-N14-H14B 116(2)
02-S1-O4 109.06(7) H1W-O1W-H2W 99(2)	
<u>U3-S1-O4</u> 108.91(7) H3W-O2W-H4W 100(2)
Hydrogen bonds D H A = d(D H) d(A H) d(D A) < (D H)	<u>A)</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>A)</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,
$O1W - H2W \dots O2W = 0.85(2) = 2.05(2) = 2.871(2) = 167(2)$)
02W-H3W01 $0.78(2)$ $2.01(2)$ $2.767(2)$ $163(2)$)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)
NI-HIAO2 0.84(2) 1.92(2) 2.750(2) 170(2)
N4-H4AO3 ^b 0.87(2) 1.86(2) 2.712(2) 166(2)
N6-H6AN2 ^a 0.82(2) 2.18(2) 2.997(2) 172(2)
N6-H6BO1 ^a 0.91(2) 2.01(2) 2.911(2) 169(2)
N7-H7AO1 W^d 0.87(2) 2.28(2) 3.014(2) 142(2))
N7-H7BO3 ^e 0.88(2) 2.00(2) 2.878(2) 171(2)
N8-H8AO2W ^a 0.87(2) 1.90(2) 2.756(2) 169(2)
N11-H11AO4 ^f 0.86(2) 1.90(2) 2.728(2) 162(2)
N13-H13AN9 ^g 0.81(2) 2.23(2) 3.039(2) 179(2)
N13-H13BO1W 0.90(2) 2.01(2) 2.875(2) 161(2)
N14-H14AO1 ^f 0.91(2) 2.07(2) 2.962(2) 168(2)
N14-H14BO4 ^h 0.86(2) 2.05(2) 2.912(2) 175(2)

Table 9S. Selected bond lengths (Å) and angles (°) for dat₂SO₄2H₂O.

Note.

Equivalent positions: ^a -1+x, y, z, -1/2+z; ^b 2-x, -y, 1-z; ^c x, -1+y, z; ^d -x, -y, -z; ^e 1-x, 1-y, -z; ^f 1-x, 1-y, 1-z; ^g 1+x, y, z; ^h -x, 1-y, 1-z. Abbreviations: A, acceptor; D, donor.

Bond/Angle	Value	Angle	Value
Cl1-O1	1.442(2)	O3-C11-O2	109.1(1)
Cl1-O2	1.444(2)	O4-Cl1-O1	109.87(9)
Cl1-O3	1.439(2)	O4-Cl1-O2	109.65(9)
Cl1-O4	1.431(2)	O4-C11-O3	110.11(9)
N1-N2	1.397(2)	N1-C5-N4	106.0(2)
N1-C5	1.317(3)	N1-C5-N6	127.9(2)
N2-C3	1.307(3)	N2-C3-N4	111.4(2)
N4-C3	1.373(3)	N2-C3-N7	125.7(2)
N4-C5	1.346(3)	N6-C5-N4	126.1(2)
C3-N7	1.344(3)	N7-C3-N4	122.8(2)
C5-N6	1.323(3)	C3-N2-N1	103.2(2)
O1-Cl1-O2	108.75(9)	C5-N1-N2	112.1(2)
O3-Cl1-O1	109.35(9)	C5-N4-C3	107.4(2)
Hydrogen bonds			
D-HA	d (D-H)	d (AH) d (DA)	<(DHA)
N1-H1AO4 ^a	0.79(3)	2.36(3) 3.008(3)	139(2)
N1-H1AO3 ^b	0.79(3)	2.46(3) 3.004(2)	128(2)
N4-H4AO2	0.78(3)	2.12(2) 2.896(2)	173(3)
N6-H6AO1	0.82(3)	2.23(3) 3.003(3)	156(3)
N6-H6AO1 ^c	0.82(3)	2.47(3) 2.988(3)	122(2)
N6-H6BO3 ^d	0.78(3)	2.33(3) 2.968(3)	140(3)
N7-H7AO2 ^e	0.81(3)	2.46(3) 3.085(3)	136(2)
N7-H7BN2 ^f	0.79(3)	2.22(3) 2.979(3)	161(3)

 Table 10S. Selected bond lengths (Å) and angles (°) for datClO₄.

Equivalent positions: ^a -1+x, -1+y, z; ^b -x, 1-y, 2-z, -1/2-z; ^c 1-x, 1-y, 2-z; ^d x, -1+y, z; ^d x, -

Bond/Angle	Value	Angle		Value
01-N3	1.243(2)	01-N3-	03	120.1(1)
O2-N3	1.258(1)	O3-N3-	02	119.1(1)
O3-N3	1.256(1)	N1-C5-1	N4	106.6(1)
N1-C5	1.320(2)	N1-C5-1	N6	128.5(1)
N2-N1	1.402(2)	N2-C3-1	N4	111.3(1)
N2-C3	1.306(2)	N2-C3-1	N7	125.9(1)
N4-C3	1.379(2)	N6-C5-1	N4	124.8(1)
N4-C5	1.349(2)	N7-C3-1	N4	122.7(1)
N6-C5	1.325(2)	C3-N2-1	N1	103.6(1)
N7-C3	1.339(2)	C5-N1-1	N2	111.5(1)
O1-N3-O2	120.8(1)	C5-N4-0	С3	107.0(1)
Hydrogen bonds				
D-HA	d (D-H)	d (AH)	d (DA)	<(DHA)
N1-H1AO1 ^a	0.88(2)	2.03(2)	2.913(2)	176(2)
N4-H4AO2 ^b	0.92(2)	1.91(2)	2.828(2)	177(1)
N6-H6AO3 ^b	0.89(2)	2.10(2)	2.950(2)	161(2)
N6-H6BO3 ^c	0.86(2)	2.06(2)	2.899(2)	166(2)
N7-H7AN2 ^b	0.89(2)	2.09(2)	2.916(2)	156(1)
N7-H7BO2	0.88(2)	2.06(2)	2.932(2)	176(2)

Table 11S. Selected bond lengths (Å) and angles (°) for $datNO_{3.}$

Equivalent positions: ^a -x, -1/2+y, -1/2-z; ^b -x, 1/2+y, -1/2-z; ^c -1+x, y, -1+z. Abbreviations: A, acceptor; D, donor.

Bond/Angle	Value	Ar	Igle	Value
N1-N2	1.397(2)	N2-C3-	<u> </u>	126.1(2)
N9-N8	1.399(2)	N6-C5-	N1	126.5(2)
C3-N2	1.300(2)	N6-C5-	N4	126.8(2)
C3-N4	1.385(2)	N7-C3-	N4	122.0(2)
C3-N7	1.356(2)	N8-C12	2-N11	106.8(1)
C5-N1	1.321(2)	N8-C12	2-N13	127.6(2)
C5-N4	1.350(2)	N9-C10)-N11	111.3(1)
C5-N6	1.320(2)	N9-C10)-N14	125.6(1)
C10-N9	1.313(2)	N13-C1	2-N11	125.6(2)
C10-N11	1.371(2)	N14-C1	0-N11	123.2(1)
C10-N14	1.339(2)	C3-N2-	N1	103.6(1)
C12-N8	1.315(2)	C5-N1-	N2	111.6(1)
C12-N11	1.348(2)	C5-N4-	C3	106.3(1)
C12-N13	1.330(2)	C10-N9	-N8	103.5(1)
N1-C5-N4	106.7(1)	C12-N8	3-N9	111.4(1)
N2-C3-N4	111.8(1)	C12-N1	1-C10	107.0(1)
Hydrogen bonds				
Hydrogen bonds D-HA	d (D-H)	d (AH)	d (DA)	<(DHA)
Hydrogen bonds D-HA O1W-H1WCl1 ^a	d (D-H) 0.74	d (AH) 2.40	d (DA) 3.126(1)	<(DHA) 166
Hydrogen bonds D-HA O1W-H1WCl1 ^a O1W-H2WCl2 ^b	d (D-H) 0.74 0.82	d (AH) 2.40 2.34	d (DA) 3.126(1) 3.148(1)	<(DHA) 166 170
Hydrogen bonds D-HA O1W-H1WCl1 ^a O1W-H2WCl2 ^b N1-H1AO1W	d (D-H) 0.74 0.82 0.80	d (AH) 2.40 2.34 2.06	d (DA) 3.126(1) 3.148(1) 2.803(2)	<(DHA) 166 170 153
Hydrogen bonds D-HA O1W-H1WCl1 ^a O1W-H2WCl2 ^b N1-H1AO1W N4-H4ACl1 ^c	d (D-H) 0.74 0.82 0.80 0.89	d (AH) 2.40 2.34 2.06 2.27	d (DA) 3.126(1) 3.148(1) 2.803(2) 3.154(1)	<(DHA) 166 170 153 175
Hydrogen bonds D-HA O1W-H1WCl1 ^a O1W-H2WCl2 ^b N1-H1AO1W N4-H4ACl1 ^c N6-H6ACl2 ^d	d (D-H) 0.74 0.82 0.80 0.89 0.87	d (AH) 2.40 2.34 2.06 2.27 2.48	d (DA) 3.126(1) 3.148(1) 2.803(2) 3.154(1) 3.239(1)	<(DHA) 166 170 153 175 147
Hydrogen bonds D-HA O1W-H1WCl1 ^a O1W-H2WCl2 ^b N1-H1AO1W N4-H4ACl1 ^c N6-H6ACl2 ^d N6-H6BCl2 ^e	d (D-H) 0.74 0.82 0.80 0.89 0.87 0.83	d (AH) 2.40 2.34 2.06 2.27 2.48 2.42	d (DA) 3.126(1) 3.148(1) 2.803(2) 3.154(1) 3.239(1) 3.244(2)	<(DHA) 166 170 153 175 147 169
Hydrogen bonds D-HA O1W-H1WCl1 ^a O1W-H2WCl2 ^b N1-H1AO1W N4-H4ACl1 ^c N6-H6ACl2 ^d N6-H6BCl2 ^e N7-H7BN2 ^a	d (D-H) 0.74 0.82 0.80 0.89 0.87 0.83 0.86	d (AH) 2.40 2.34 2.06 2.27 2.48 2.42 2.22	d (DA) 3.126(1) 3.148(1) 2.803(2) 3.154(1) 3.239(1) 3.244(2) 3.068(2)	<(DHA) 166 170 153 175 147 169 169
Hydrogen bonds D-HA O1W-H1WCl1 ^a O1W-H2WCl2 ^b N1-H1AO1W N4-H4ACl1 ^c N6-H6ACl2 ^d N6-H6BCl2 ^e N7-H7BN2 ^a N8-H8AO1W ^f	d (D-H) 0.74 0.82 0.80 0.89 0.87 0.83 0.86 0.80	d (AH) 2.40 2.34 2.06 2.27 2.48 2.42 2.22 2.17	d (DA) 3.126(1) 3.148(1) 2.803(2) 3.154(1) 3.239(1) 3.244(2) 3.068(2) 2.856(2)	<(DHA) 166 170 153 175 147 169 169 143
Hydrogen bonds D-HA O1W-H1WCl1 ^a O1W-H2WCl2 ^b N1-H1AO1W N4-H4ACl1 ^c N6-H6ACl2 ^d N6-H6BCl2 ^e N7-H7BN2 ^a N8-H8AO1W ^f N11-H11AN9 ^g	d (D-H) 0.74 0.82 0.80 0.89 0.87 0.83 0.86 0.80 0.78	d (AH) 2.40 2.34 2.06 2.27 2.48 2.42 2.22 2.17 2.13	d (DA) 3.126(1) 3.148(1) 2.803(2) 3.154(1) 3.239(1) 3.244(2) 3.068(2) 2.856(2) 2.834(2)	<(DHA) 166 170 153 175 147 169 169 143 151
Hydrogen bonds D-HA O1W-H1WCl1 ^a O1W-H2WCl2 ^b N1-H1AO1W N4-H4ACl1 ^c N6-H6ACl2 ^d N6-H6BCl2 ^e N7-H7BN2 ^a N8-H8AO1W ^f N11-H11AN9 ^g N13-H13ACl1 ^g	d (D-H) 0.74 0.82 0.80 0.89 0.87 0.83 0.86 0.80 0.78 0.86	d (AH) 2.40 2.34 2.06 2.27 2.48 2.42 2.22 2.17 2.13 2.68	d (DA) 3.126(1) 3.148(1) 2.803(2) 3.154(1) 3.239(1) 3.244(2) 3.068(2) 2.856(2) 2.834(2) 3.241(1)	<(DHA) 166 170 153 175 147 169 169 143 151 124
Hydrogen bonds D-HA O1W-H1WCl1 ^a O1W-H2WCl2 ^b N1-H1AO1W N4-H4ACl1 ^c N6-H6ACl2 ^d N6-H6BCl2 ^e N7-H7BN2 ^a N8-H8AO1W ^f N11-H11ACl1 ^g N13-H13ACl1 ^g N13-H13BCl2	d (D-H) 0.74 0.82 0.80 0.89 0.87 0.83 0.86 0.80 0.78 0.86 0.82	d (AH) 2.40 2.34 2.06 2.27 2.48 2.42 2.22 2.17 2.13 2.68 2.38	d (DA) 3.126(1) 3.148(1) 2.803(2) 3.154(1) 3.239(1) 3.244(2) 3.068(2) 2.856(2) 2.834(2) 3.241(1) 3.153(2)	<(DHA) 166 170 153 175 147 169 169 143 151 124 158
Hydrogen bonds D-HA O1W-H1WCl1 ^a O1W-H2WCl2 ^b N1-H1AO1W N4-H4ACl1 ^c N6-H6ACl2 ^d N6-H6BCl2 ^e N7-H7BN2 ^a N8-H8AO1W ^f N11-H11ACl1 ^g N13-H13ACl1 ^g N13-H13BCl2 N14-H14ACl2 ^h	d (D-H) 0.74 0.82 0.80 0.89 0.87 0.83 0.86 0.80 0.78 0.86 0.82 0.86	d (AH) 2.40 2.34 2.06 2.27 2.48 2.42 2.22 2.17 2.13 2.68 2.38 2.46	d (DA) 3.126(1) 3.148(1) 2.803(2) 3.154(1) 3.239(1) 3.244(2) 3.068(2) 2.856(2) 2.834(2) 3.241(1) 3.153(2) 3.318(2)	<(DHA) 166 170 153 175 147 169 169 143 151 124 158 174

Table 12S. Selected bond lengths (Å) and angles (°) for dat₂Cl₂H₂O.

Equivalent positions: ^a 1-x, 1-y, 1-z; ^b 1/2-x, -1/2+y, 3/2-z, -z; ^c 1+x, y, z, 1-z; ^d 3/2+x, 3/2-y, 1/2+z; ^e 3/2-x, -1/2+y, 3/2-z; ^e 3/2-x, -1/2+y, 3/2-z; ^f 3/2-x, 1/2+y, 3/2-z; ^g -1/2+x, 3/2-y, -1/2+z; ^h 1/2+x, 3/2-y, -1/2+z.

Abbreviations: A, acceptor; D, donor.

Bond/Angle	Value	Angle	Value
P1-H1	1.29	O1-P1-O3	114.76(7)
N1-N2	1.397(2)	O2-P1-H1	100.0
O1-P1	1.502(1)	O3-P1-H1	109.0
O2-P1	1.576(1)	O3-P1-O2	109.75(7)
O3-P1	1.510(1)	N1-C5-N4	106.8(2)
C3-N2	1.306(2)	N2-C3-N7	125.6(2)
C3-N4	1.378(2)	N2-C3-N4	111.6(2)
C3-N7	1.352(2)	N6-C5-N1	127.3(2)
C5-N1	1.324(2)	N6-C5-N4	126.0(2)
C5-N4	1.351(2)	N7-C3-N4	122.8(2)
C5-N6	1.321(2)	C3-N2-N1	103.8(1)
Р1-О2-Н2	109.3	C5-N1-N2	111.3(2)
O1-P1-H1	110.7	C5-N4-C3	106.6(1)
O1-P1-O2	111.69(7)		
Hydrogen bonds			
D-HA	d (D-H)	d (AH) d (DA)) <(DHA)
O2-H2O3 ^a	0.87	1.71 2.575(2)	174
N1-H1A01	0.81	1.92 2.710(2)	165
N4-H4A01 ^b	0.86	1.91 2.759(2)	169
N6-H6AN2 ^b	0.86	2.05 2.906(2)	177
N6-H6BO2 ^c	0.86	2.17 3.001(2)	164
N7-H7AO3 ^b	0.90	1.99 2.894(2)	175
N7-H7BO3 ^d	0.83	2.15 2.938(2)	159

Table 13S. Selected bond lengths (Å) and angles (°) for datH₂PO₃.

Equivalent positions: ^a x, 1/2-y, -1/2+z; ^b 1-x, 1/2+y, 3/2-z, -1/2-z; ^c 2-x, 1-y, 2-z; ^d -1+x, 1/2-y, -1/2+z.

Abbreviations: A, acceptor; D, donor.

Bond/Angle	Value	Angle	Value
P1-O1	1.561(1)	O2-P1-O4	111.74(6)
P1-O2	1.571(1)	O3-P1-O4	114.81(6)
P1-O3	1.505(1)	P1-O1-H1	116(1)
P1-O4	1.516(1)	Р1-О2-Н2	117(1)
O1-H1	0.83(2)	N1-N2-C3	103.7(1)
О2-Н2	0.82(1)	N1-C5-N6	128.3(1)
N1-H1A	0.87(1)	N2-N1-H1A	120(1)
N1-C5	1.326(2)	N2-N1-C5	111.3(1)
N2-N1	1.407(2)	N2-C3-N7	127.4(2)
N2-C3	1.299(2)	N4-C3-N2	111.5(1)
N4-H4A	0.86(2)	N4-C3-N7	121.1(2)
N4-C3	1.382(2)	N4-C5-N1	106.4(1)
N4-C5	1.348(2)	N4-C5-N6	125.3(2)
N6-H6A	0.88(2)	C3-N4-H4A	125(1)
N6-H6B	0.88(1)	C3-N4-C5	107.1(1)
N6-C5	1.324(2)	C3-N7-H7A	119(1)
N7-H7A	0.88(2)	C3-N7-H7B	113(2)
N7-H7B	0.88(1)	C5-N1-H1A	128(1)
N7-C3	1.342(2)	C5-N4-H4A	128(1)
O1-P1-O2	106.92(7)	C5-N6-H6A	117(1)
O1-P1-O3	112.27(6)	C5-N6-H6B	115(2)
O1-P1-O4	104.95(6)	H6B-N6-H6A	128(2)
O2-P1-O3	105.99(6)	H7B-N7-H7A	111(2)
Hydrogen bonds			
D-HA	d (D-H)	d (AH) d (DA)	<(DHA)
O1-H1O3 ^a	0.83(2)	1.70(2) 2.527(2)	178(2)
O2-H2O4 ^c	0.82(1)	1.76(1) 2.585(2)	177(2)
N1-H1AO3 ^b	0.88(1)	1.94(2) 2.756(2)	155(2)
$N4-H4AO4^{d}$	0.86(2)	1.94(2) 2.766(2)	162(2)
N6-H6AN2 ^d	0.88(1)	2.16(1) 3.026(2)	167(2)
N6-H6BO2 ^e	0.88(1)	2.18(2) 2.987(2)	153(2)
N7-H7AO1 ^d	0.88(2)	2.09(2) 2.939(2)	164(2)
N7-H7BO4	0.88(1)	2.03(1) 2.893(2)	167(2)

Table 14S. Selected bond lengths (Å) and angles (°) for $datH_2PO_4$.

Equivalent positions: ^a-x, 1/2-y, -1/2+z; ^b 1/4+x, 1/4-y, 1/4+z, -1/2-z; ^c 1/2-x, 1/2-y, z; ^d x, y, 1+z; ^e 1/4-x, -1/4+y, 3/4+z.

Abbreviations: A, acceptor; D, donor.

	Dev	viation of fitted	C-N bond	inter-nlanar	
	(of NH ₂ groups	(Å)	(Å)	angles (°)
	N - atom	HXA - atom	HXB - atom	(11)	ungles ()
dat*	0.0924	-0.0860	-0.2901	1.376(0)	37.77(2)
	-0.0682	0.1851	0.1088	1.353(0)	27.33(2)
datNO ₃	-0.0663	-0.0007	0.0904	1.325(2)	15.37(2)
	-0.0430	0.1755	0.0654	1.339(2)	21.00(1)
datClO ₄	0.0144	-0.0490	-0.0785	1.323(3)	11.42(1)
	-0.0665	0.1535	0.0565	1.344(3)	25.22(1)
datH ₂ PO ₃	-0.0055	-0.0132	0.0027	1.320(2)	0.61(6)
	-0.0376	0.1180	0.2470	1.352(2)	31.60(4)
datH ₂ PO ₄	-0.0121	0.0768	-0.1394	1.324(2)	8.41(0)
	0.0642	-0.2689	-0.1853	1.342(2)	36.08(0)
dat ₂ Cl ₂ H ₂ O	0.0003	0.0034	-0.1434	1.320(2)	11.23(1)
	-0.0999	0.3415	-0.0394	1.356(2)	38.40(0)
	0.0495	-0.1507	-0.0926	1.330(2)	24.11(1)
	0.0351	-0.0911	-0.0545	1.339(2)	14.82(1)
dat ₂ SO ₄ 2H ₂ O	-0.0159	0.0831	0.1249	1.322(3)	14.98(0)
	0.0151	-0.0407	0.1377	1.335(3)	8.00(0)
	-0.0248	0.0602	0.0813	1.318(3)	11.72(0)
	0.0521	-0.1418	0.1197	1.333(3)	12.40(0)
dat ₂ SeO ₄ 2H ₂ O	0.0344	-0.1632	-0.0817	1.328(2)	19.65(0)
	-0.0047	0.1027	-0.1576	1.339(2)	10.50(0)
	-0.0279	0.0133	0.1103	1.329(2)	12.33(0)
	0.0706	-0.1925	0.2142	1.344(2)	17.73(1)

Table 15S. Comparison of geomeric parameters (distances from the triazole ring plane; angles between the plane of triazole ring and plane of NH₂ groups).

Note: Symbols: N-atom (N6, N7, or N13, N14), HXA-atom (H6A, H7A, or H13A, H14A), and HXB-atom (H6B, H7B, or H13B, H14B). The asterisk indicate the 3,5-diamino-1,2,4-triazole from the Crystal Structural Database (database code CSD – **Damtrz20**).

P2I VD 6 21+C	Relative		
D3L11 0-31 0	inter	nsities ^b	Assignment
$S.F.^{a} = 0.960$	IR	Raman	
183	0	0	τ NH ₂ , γ rg
211	1	0	τ NH ₂ , γ rg, $ω$ NH ₂
255	0	0	τ NH ₂ , γ NH, γ rg
306	1	2	$ ho NH_2$
354	1	0	γrg, γNH
466	0	2	$\rho \mathrm{NH}_2$
557	20	0	$\omega NH_2, \gamma NH$
570	0	0	ω NH ₂ , γ NH, δ rg
585	7	0	γ NH, δ rg
620	29	0	γ NH, γ rg, ω NH ₂
640	0	14	ν rg, ρ NH ₂
645	40	1	γ NH, ω NH ₂ , γ rg
705	18	0	δ CNC(rg), γ rg
771	1	5	δ CNN(rg), γ NH, γ rg
928	1	5	ν NN(rg), ρ NH ₂ , δ NH, δ rg
963	0	0	$\rho NH_2, \nu rg$
1032	0	9	$\rho \text{ NH}_2, \nu \text{ NC}(rg), \delta rg$
1050	1	7	$\rho \text{ NH}_2, \nu \text{ NC}(rg), \delta rg$
1103	1	14	$\rho \text{ NH}_2, \nu \text{ NN(rg)}, \delta \text{ rg}$
1306	0	5	δ NH, ν CN, ν CN(rg), δ rg
1340	3	4	δ NH, ρ NH ₂ , ν CN(rg), δ rg
1385	0	8	ν rg, δ NH, ρ NH ₂
1489	3	2	ν rg, ρ NH ₂ , δ NH
1615	2	2	δNH_2 , δrg
1641	1	1	δ NH ₂ , δ NH, δ rg
1651	100	3	δ NH ₂ , ν CN, δ rg, δ NH
1679	20	18	δ NH ₂ , ν CN, δ rg, δ NH
3461	25	59	νNH
3472	14	100	νNH
3509	14	44	νNH
3539	16	57	v NH
3571	11	29	v NH
3592	10	27	v NH

 Table 16S: Calculated (scaled) fundamental frequencies (cm⁻¹) of dat(1+) cation

^a Precomputed vibrational scaling factor⁴⁰.

^b The intensities of the calculated IR and Raman bands are presented on a relative scale from 0 to 100.

FTIR	Raman	Assignment
cm ⁻¹	cm ⁻¹	Assignment
3470 sh		ν OH(O)
3310 mb	3317 mb	ν OH(O), ν NH(O)
3260 m	3258 m	v NH(O)
3191 m	3201 m	v NH(N), v NH(O)
3130 m	3130 m	ν NH(N), ν NH(O)
2916 m		v NH(0)
2/9/m		V NH(O)
2660 m	1(02 -	V NH(O)
10/0 S	1692 s	$O NH_2, V CN, O IG, O NH$
1622 m	162/m	δ NH ₂ , δ NH, δ rg
1537 m	1543 m	$v rg, \rho NH_2, \delta NH$
1464 vw	1471 m	ν rg, δ NH, ρ NH ₂
	1411 sh	ν rg, δ NH, ρ NH ₂
1378 w	1388 m	ν rg, δ NH, ρ NH ₂
1353 sh	1349 w	δ NH, ρ NH ₂ , ν CN(rg), δ rg
1157 w	1155 m	$\rho \text{ NH}_2, \nu \text{ NN}(rg), \delta rg$
1110 wb		$\rho \text{ NH}_2, \nu \text{ NN}(rg), \delta rg$
1066 vw	1073 s	$\rho \text{ NH}_2, \nu \text{ NC(rg)}, \delta \text{ rg}$
1046 w	1052 sh	$\rho \text{ NH}_2, \nu \text{ NC(rg)}, \delta \text{ rg}$
1015 m	1019 m	ρ NH ₂ , ν rg
	890 w	v NN (rg), ρ NH ₂ , δ NH, δ rg
865 s	864 m	$v_3 \text{ SeO}_4^{2-}$
	836 vs	$v_1 \operatorname{SeO_4}^{2}$
797 m	798 s	δ CNN(rg), γ NH, γ rg, γ NH(N)
724 m	735 vw	δ CNC(rg), γ rg, γ OH(O)
662 m	665 s	γ NH, ω NH ₂ , γ rg, γ OH(O)
560 wb		$\omega \text{ NH}_2, \gamma \text{ NH}$
519 w	518 m	?
	437 w	?
421 m	421 w	$v_4 \operatorname{SeO_4}^{2-}$
	405 w	?
	361 w	γ rg, γ NH
	333 wb	$v_2 {\rm SeO_4}^{2-}$
	251 w	?
	236 sh	?
	161 m	$\tau NH_2, \gamma rg$
	141 m	External modes
	120 m	External modes

Table 17S. FTIR and Raman spectra of $dat_2SeO_42H_2O$.

Note: Abbreviations and symbols: vs, very strong; s, strong; m, medium; w, weak; b, broad; sh, shoulder; v, stretching; δ , deformation or in-plane bending; γ , out-of-plane bending; ρ , rocking; ω , wagging; τ , torsion; s, symmetric; as, antisymmetric.

FTIR	Raman	Assignment
cm ⁻¹	cm ⁻¹	Assignment
	3320 mb	v OH(O)
3304 m		v OH(O)
3263 m	3266 m	v NH(O)
3201 m	3212 m	v NH(O)
3122 m	3129 m	v NH(N), v NH(O)
	2927 vw	v NH(O)
2803 m	2827 vw	v NH(O)
2731 m		v NH(O)
2666 m	2674 vw	v NH(O)
1692 s	1694 m	$\delta \text{ NH}_2$, v CN, $\delta \text{ rg}$, $\delta \text{ NH}$
1678 s		$\delta \text{ NH}_2$, v CN, $\delta \text{ rg}$, $\delta \text{ NH}$
1653 sh		δ NH ₂ , v CN, δ rg, δ NH, δ H ₂ O
1630 m	1630 m	δ NH ₂ , δ NH, δ rg
1620 m		δ NH ₂ , δ NH, δ rg
1540 m	1541 w	ν rg, ρ NH ₂ , δ NH
1466 vw	1467 w	ν rg, δ NH, ρ NH ₂
1382 m	1384 w	ν rg, δ NH, ρ NH ₂
	1353 vw	δ NH, ρ NH ₂ , ν CN(rg), δ rg
1157 sh	1159 m	$\rho \text{ NH}_2, \nu \text{ NN(rg)}, \delta \text{ rg}$
1102 s		$v_3 SO_4^{2-}$
	1071 s	$\rho \text{ NH}_2, \nu \text{ NC(rg)}, \delta \text{ rg}$
1053 m	1050 sh	ρ NH ₂ , ν NC(rg), δ rg
1012 m	1017 s	$\rho \text{ NH}_2, \nu \text{ rg}$
	981 vs	$v_1 SO_4^{2-}$
	820 wb	δ CNN(rg), γ NH, γ rg
799 mb	798 m	δ CNN(rg), γ NH, γ rg, γ NH(N)
774 sh		δ CNN(rg), γ NH, γ rg
721 m	735 vw	δ CNC(rg), γ rg, γ OH(O)
664 w	667 m	γ NH, ω NH ₂ , γ rg, γ OH(O)
613 m	605 w	$v_4 \text{ SO}_4^{2-}$, $\gamma \text{ NH}$, $\gamma \text{ rg}$, $\omega \text{ NH}_2$
514 m	518 w	$ ho NH_2$
	469 m	$v_2 SO_4^{2^-}, \rho NH_2$
	375 m	γ rg, γ NH
	164 s	$\tau NH_2, \gamma rg$
	147 s	External modes
	130 s	External modes
	102 s	External modes

Table 18S. FTIR and Raman spectra of dat₂SO₄2H₂O.

FTIR	Raman	Assistment
cm ⁻¹	cm ⁻¹	Assignment
3472 m		v NH(O)
3458 m	3462 w	v NH(O)
3410 m	3417 w	v NH(O)
3368 m	3371 w	v NH(O)
3340 sh		v NH(O)
3278 m		v NH(O)
3220 m	3222 wb	v NH(O)
3174 m	3177 wb	$v \text{ NH}(\dots N), v \text{ NH}(\dots O)$
3006 W		v NH(N), v NH(O)
2908 W		? 9
2828 w 2752 w		? ?
1700 m	1701 m	δ ΝΗ ₂ ν CN δrg δ ΝΗ
1681 mb	1667 m	δNH_2 , $V CN$, δrg , δNH
1645 m	1007 111	$\delta NH, \delta NH, \delta rg$
1602 w	1602 w	$\delta NH \delta ra$
1002 W	1586 w	$\delta NH \delta rg$
1542	1500 W	$0 \text{ NH}_2, 0 \text{ Ig}$
1342 III 1459 m	1340 W	v_{1g} , p_{1n_2} , o_{1n_1}
1436 III 1267 w	1401 111	$\sqrt{19}$, $\sqrt{10}$, $\sqrt{10}$, $\sqrt{10}$, $\sqrt{10}$, $\sqrt{10}$
1307 w 1345 sh	1345 m	$\delta NH \gamma CN \gamma CN(rg) \delta rg$
15 15 51	1172 m	$\circ NH_{2} \vee NN(rg) \delta rg$
1157 sh	11/2 11	$\circ NH_{2}$, $\vee NN(rg)$, δrg
1127 ch	1122 ch	γClO^{-1}
$1127 \operatorname{sh}$ $1105 \operatorname{sh}$	1122 sm	$v_3 ClO_4$
1097 s	1110 111	$v_3 ClO_4$
1007 5	1072	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$
1052 m	1075 111	$\rho \operatorname{NH}_2$, $\nu \operatorname{NC}(\operatorname{rg})$, $\delta \operatorname{rg}$
1032 m	1018 m	$\rho \operatorname{NH}_2$, $v \operatorname{NC}(\operatorname{Ig})$, $\sigma \operatorname{Ig}_2$
1015 11	1018 11	
934 w	935 vs	$V_1 CIO_4$
	908 w	v NN (rg), ρ NH ₂ , δ NH, δ rg
	799 W	$\delta \text{CNN}(\text{rg}), \gamma \text{NH}, \gamma \text{rg}$
722 33	/43 W	$\delta CNC(rg), \gamma rg \sim NH(-N)$
672 w	669 m	$\gamma NH_{\odot} NH_{\odot} \gamma rg$
631 sh	632 m	γ ClO ₄ γ NH org δ CN
625 m	627 m	v ₄ ClO ₄
573 w	02 / III	ωNH_2 , γNH , δrg
500 w	493 w	$v_2 ClO_4$
471 w	470 w	$v_2 \text{ ClO}_4$, $\rho \text{ NH}_2$
458 vw	455 w	$ ho NH_2$
	344 w	γrg, γNH
	232 vw	τ NH ₂ , γ rg, $ω$ NH ₂
	151 m	External modes
	126 s	External modes
	98 sh	External modes
	84 s	External modes
	70 s	External modes

Table 19S. FTIR and Raman spectra of datClO₄.

FTIR	Raman	Assignment
cm ⁻¹	cm ⁻¹	Assignment
3360 s	3360 w	v NH(O)
3268 s	3277 w	v NH(O)
3189 s	3193 w	v NH(O)
3065 sh		v NH(O)
2964 w		v NH(O)
2812 w		v NH(N)
2680 w		v NH(N)
2438 w		?
2139 w		?
1777 w		$v_1 + v_4 NO_3$
1767 w		?
1717 m		?
1698 s	1707 m	δ NH ₂ , v CN, δ rg, δ NH
1695 s		δ NH ₂ , v CN, δ rg, δ NH
1687 s		δ NH ₂ , v CN, δ rg, δ NH
1684 s	1677 sh	δ NH ₂ , v CN, δ rg, δ NH
	1668 m	δ NH ₂ , v CN, δ rg, δ NH
1659 s	1651 w	δ NH ₂ , v CN, δ rg, δ NH
1616 vw	1618 w	$\delta NH_2, \delta rg$
1540 m	1545 w	ν rg, ρ NH ₂ , δ NH
	1468 m	ν rg, ρ NH ₂ , δ NH
1393 s	1394 w	$v_3 NO_3$
1375 sh	1381 w	ν rg, δ NH, ρ NH ₂
1355 sh	1357 vw	δ NH, v CN, v CN(rg), δ rg
1338 s		$v_3 NO_3$
1153 m	1155 s	ρ NH ₂ , v NN(rg), δ rg
1072 sh	1074 vs	ρ NH ₂ , v NC(rg), δ rg
1067 m		$\rho \text{ NH}_2, \nu \text{ NC(rg)}, \delta \text{ rg}$
1053 m	1055 vs	v1 NO3
1012 mb	1015 m	$\rho \text{ NH}_2, \gamma \text{ rg}$
817 m	820 vw	v ₂ NO ₂
804 vw	807 m	$\delta CNN(rg)$, γNH , γrg
790 mb	794 w	$\delta \text{CNN}(\text{rg}), \gamma \text{ NH}, \gamma \text{ rg}, \gamma \text{ NH}(\text{N})$
724 m	730 m	$v_4 NO_2$, $\gamma CNC(rg)$, γrg
716 m	717 vw	$v_{\rm r} NO_{\rm s}^{-1} \delta CNC(rg) \gamma rg$
692 mb	/1/ ///	γ NH ω NH, γ rg
666 vw	671 m	vrg o NH
585 mh	071 111	ω NH ₂ γ NH δ rg
500 mo 520 sh	515 w	o NH-
520 311	366 m	vrg vNH
	242 vw	$\tau NH_{\rm V} NH_{\rm V} rg$
	272 VW	τ NH ₂ , μ rg ω NH ₂
	101 vm	τ NH ₂ , γ rg
	147 ve	External modes
	133 sh	External modes
	105 vs	External modes
	80 vs	External modes
	71 s	External modes

Table 20S. FTIR and Raman spectra of $datNO_3$.

FTIR	Raman	Assignment
cm ⁻¹	cm ⁻¹	Assignment
	3419 w	νNH
3338 mb	3318 wb	v NH
	3236 wb	v NH
3161 mb	3172 wb	v NH(N), v NH(O)
2949 s		v NH(O)
2914 s		v NH(O)
2870 s		v NH(O)
2781 s		?
2724 s		?
2658 s		?
2132 S	1 (0 0	
1695 m	1688 m	δ NH ₂ , v CN, δ rg, δ NH
1659 m	1658 m	δ NH ₂ , v CN, δ rg, δ NH, δ H ₂ O
1598 m	1609 w	$\delta NH_2, \delta NH, \delta rg$
	1591 w	$\delta NH_2, \delta rg$
	1568 m	ν rg, ρ NH ₂ , δ NH
1536 m	1541 w	ν rg, ρ NH ₂ , δ NH
1455 m	1455 w	ν rg, δ NH, ρ NH ₂
1353 s		δ NH, $ρ$ NH ₂ , $ν$ CN(rg), $δ$ rg
1338 m	1332 m	δ NH, $ρ$ NH ₂ , $ν$ CN(rg), $δ$ rg
1302 m	1305 m	δ NH, ν CN, ν CN(rg), δ rg
1162 m	1164 m	$\rho \text{ NH}_2, \nu \text{ NN(rg)}, \delta \text{ rg}$
1063 m	1070 s	ρ NH ₂ , ν NC(rg), δ rg
1013 vs	1014 s	ρ NH ₂ , ν rg
928 w		ν NN (rg), ρ NH ₂ , δ NH, δ rg
799 s	796 m	δ CNN(rg), γ NH, γ rg, γ NH(N)
717 m	723 w	δ CNC(rg), γ rg
653 m	664 m	γ NH, ω NH ₂ , γ rg
607 mb		γ NH, γ rg, ω NH ₂
546 m		ω NH ₂ , $γ$ NH
489 mb	498 m	ρ NH ₂
	353 m	γrg, γNH
	340 sh	ρ NH ₂
	202 w	τNH_2 , γrg , ωNH_2
	172 sh	τ NH ₂ , γ rg
	147 s	External modes
	115 vs	External modes
	102 vs	External modes

Table 21S. FTIR and Raman spectra of dat2Cl2H2O.

FTIR	Raman	Assignment
cm ⁻¹	cm ⁻¹	Assignment
3364 m		v NH(O)
	3317 w	v NH(O)
	3266 w	v NH(O)
	3194 m	v NH(O)
3174 m	3077 m	v NH(0)
3078 m		$v \text{ NH}(\dots 0)$
2816 m		$v \text{ NH}(\dots 0), v \text{ NH}(\dots N)$
2/5/mb 2701 m		$v \operatorname{NH}(\ldots 0)$ $v \operatorname{NH}(\ldots 0) v (OH = 0)$
2/01 11	0.401	v NII(0), v (0110)
2418 m	2421 vs	VPH
1/09 sh	1701	
1696 S	1/01 m	\circ NH ₂ , V CN, \circ fg, \circ NH
1663 s	1662 vw	δ NH ₂ , V CN, δ rg, δ NH
1629 w	1634 m	δ NH ₂ , δ NH, δ rg
1541 w	1549 vw	$v rg, \rho NH_2, \delta NH$
1476 vw	1482 m	v rg, δ NH, ρ NH ₂
1398 w	1402 m	ν rg, δ NH, ρ NH ₂
1373 w		ν rg, δ NH, ρ NH ₂
1231 mb		δРОН
1185 sh	1187 m	$\rho \text{ NH}_2, \nu \text{ NN(rg)}, \delta \text{ rg}$
1145 s		$\nu_aPO_2,\rhoNH_2,\nuNN(rg),\deltarg$
1118 sh		$\rho \text{ NH}_2, \nu \text{ NN}(rg), \delta rg$
1084 m		v _s PO ₂
1053 m	1055 vs	γ PH, ρ NH ₂ , ν CN(rg), δ rg
1028 m	1033 vs	δ PH, ρ NH ₂ , ν CN(rg), δ rg
	1019 vs	$ ho NH_2$, v CN(rg), δ rg
993 m	994 m	$ ho NH_2$, v rg
927 m		ν PO _H , ν NN (rg), ρ NH ₂ , δ NH, δ rg, γ OH(O)
886 sh		?
866 sh		?
842 mb		γ NH(N)
809 w	809 m	δ CNN(rg), γ NH, γ rg
796 w		δ CNN(rg), γ NH, γ rg
724 m	738 w	δ CNC(rg), γ rg
669 w	671 m	$\gamma \text{ NH}, \omega \text{ NH}_2, \gamma \text{ rg}$
635 wb		$\gamma \text{ NH}, \gamma \text{ rg}, \omega \text{ NH}_2$
	583 w	γ NH, δ rg
562 m		ρPO ₂
532 sh	536 m	$\omega \operatorname{NH}_2, \gamma \operatorname{NH}$
522 m	523 sh	$\delta PO_2, \omega NH_2, \gamma NH$
	465 w	ρ NH ₂
453 m	456 w	δPO_{H}
433 sh	423 w	?
	371 m	γ rg, γ NH
	238 vw	$\tau NH_2, \gamma rg, \omega NH_2$
	157 m	$\tau NH_2, \gamma rg$
	132 vs	External modes
	86 vs	External modes
	69 s	External modes

Table 22S. FTIR and Raman spectra of $datH_2PO_3$.

FTIR	Raman	Assignment
cm ⁻¹	cm ⁻¹	Assignment
3405 m	3407 wb	v NH(O)
3367 m	3361 w	v NH(O)
	3319 w	v NH(O)
3269 m	3270 w	v NH(O)
3224 m	3231 w	v NH(N), v NH(O)
	3161 m	v NH(N), v NH(O)
2725 m		v OH(O), v NH(O)
2656 m		v OH(O), v NH(O)
2356 mb		v OH(O)
1680 vs	1687 m	δ NH ₂ , v CN, δ rg, δ NH
	1632 w	δ NH ₂ , δ NH, δ rg
	1621 sh	δ NH ₂ , δ NH, δ rg
1529 m	1532 w	ν rg, ρ NH ₂ , δ NH
1459 vw	1457 m	v rg, δ NH, ρ NH ₂
	1403 vw	δ NH, ρ NH ₂ , ν CN(rg), δ rg
1362 m	1363 w	δ NH, ρ NH ₂ , ν CN(rg), δ rg
	1342 w	δ NH. v CN. v CN(rg). δ rg
1262 sh		?
1237 m		δРОН
1165 sh	1167 w	ρ NH ₂ , v NN(rg), δ rg
1126 s	1120 vw	$v_3 PO_4$
1087 s		$v_2 PO_4$
1055 m	1055 s	$0 \text{ NH}_2 \text{ V NC}(rg) \delta rg \text{ V OH}(-\Omega)$
1013 m	1014 s	v CN v ring v OH(-O)
1015 m 1001 m	995 s	$v CN, \gamma ring, \gamma OH(O)$
970 s	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ν- PO.
103	012 s	$v_3 PO$
883 m	912 5 999 w	$v_1 + o_4$
831 mh	000 W	γ NH(N)
796 m	796 m	$\delta CNN(rg) \gamma NH \gamma rg$
721 m	/) O III	$\delta CNC(rg) \gamma rg$
/21 111	704 wb	$\delta CNC(rg), \gamma rg$
670 w	668 m	$\gamma NH \oplus NH_{2} \gamma rg$
637 wh	000 111	γ NH γ rg ω NH ₂
552 m	547 w	γ PO α NH γ NH
520 sh	572 ch	$V_4 + O_4, \otimes NH_2, \gamma NH$
529 SII	525 SII	$v_4 PO_4, \omega NH_2, \gamma NH$
309 III 406 -1	510 III	$v_4 PO_4$
496 sn	47.5	ρNH_2
480 m	475 w	ρ NH ₂
	442 w	?
	404 W	
	3/1 m	$v_2 PO_4, \gamma rg, \gamma NH$
	360 w	$v_2 PO_4$, γ rg, γ NH
	351 w	External modes
	234 vw	External modes
	150 m	External modes
	126 vs	External modes
	107 vs	External modes

Table 238. FTIR and Raman spectra of $datH_2PO_4$.

Free ion modes	Degrees of freedom	Free ion XO_4^{2-} T_d	Site symmetry C ₁	Factor group C _i	Vibrational modes
\mathbf{v}_1	2	A_1	\	Δ (Ra)	N. 2N. 3N. 3N.
v_2	2	Е	$\langle \rangle$	$n_{g}(\mathbf{R}a)$	$v_1, 2v_2, 3v_3, 3v_4$
v_3	2	F_2	A	A (IR)	<u>, , , , , , , , , , , , , , , , , , , </u>
ν_4	2	F_2	/	$A_{u}(\mathbf{IX})$	$v_1, 2v_2, 3v_3, 3v_4$

Table 24S: Correlation diagram of XO_4^{2-} (X= S or Se) internal modes in $dat_2SO_42H_2O$ and $dat_2SeO_42H_2O$ crystals.

Table 25S: Correlation diagram of ClO₄⁻ internal modes in **datClO₄** crystals.

Free ion modes	Degrees of freedom	Free ion ClO ₄ T _d	Site symmetry C ₁	Factor grup C _i	Vibrational modes
\mathbf{v}_1	2	A_1	\mathbf{N}	Δ (Ra)	N. 2N. 3N. 3N.
v_2	2	E	$\langle \rangle$	$M_{g}(\mathbf{R}a)$	$v_1, 2v_2, 3v_3, 3v_4$
v_3	2	F_2		A (IR)	N. 2N. 3N. 3N.
ν_4	2	F_2	/	$T_{u}(\mathbf{n}\mathbf{x})$	$v_1, 2v_2, 3v_3, 3v_4$

Table 26S: Correlation diagram of NO₃⁻ internal modes in datNO₃ crystals.

Free ion modes	Degrees of freedom	Free ion NO ₃ ⁻ D _{3h}	Site symmetry C ₁	Factor grup C _{2h}	Vibrational modes
\mathbf{v}_1	4	A_1	\backslash /	$A_{g}(Ra)$	$v_1, v_2, 2v_3, 2v_4$
v_2	4	A_2	$\langle \rangle$	$A_{u}(IR)$	$v_1, v_2, 2v_3, 2v_4$
v ₃	4	Έ		$B_{g}(Ra)$	$v_1, v_2, 2v_3, 2v_4$
ν_4	4	Έ	/ \	$B_{u}(IR)$	$v_1, v_2, 2v_3, 2v_4$

Free ion modes of HPO ₃ ²⁻	Degrees of freedom	Free ion HPO ₃ ²⁻ C_{3v}	Free ion $H_2PO_3^-$ C_s	Site symmetry C ₁	Factor group C _s	Vibrational modes
ν ₁ (ν PH)	4	A_1	\backslash			$4v_1$ (v PH)
v_2 (δ PH)	4	Е	A'		A' (IR, Ra)	$4v_2$ (δ PH) $4v_2$ (γ PH)
$v_3' (v_s PO_2)$	4	A_1	χ	\setminus /		$4v_3'(v PO_H)$
$v_3^{\prime\prime} (v_{as} PO_2)$	4	Е			<.	$4v_{3}''(v_{s} PO_{2})$ $4v_{3}''(v_{as} PO_{2})$
ν_4' ($\delta_s PO_3$)	4	A_1	// \\A'' <		A'' (IR, Ra)	$4v_4'(\delta PO_H)$
ν_4 $^{\prime\prime}$ (δ_{as} PO ₃)	4	Е	V			$4v_{4}^{''} (\delta PO_{2}) 4v_{4}^{''} (\rho PO_{2})$

Table 27S: Correlation diagram of $H_2PO_3^-$ internal modes in $datH_2PO_3$ crystals.

Table 28S: Correlation diagram of $H_2PO_4^-$ internal modes in $datH_2PO_4$ crystals.

Free ion modes of PO ₄ ³⁻	Degrees of freedom	Free ion PO_4^{3-} T_d	Free ion $H_2PO_4^-$ C_{2y}	Site symmetry C ₁	Factor group	Vibrational modes
ν_1	16	A ₁ —	$\overline{A_1}$	I	$A_1(\text{IR}, \text{Ra})$	$16v_1(v_s P(O_H)_2)$
ν_2	16	E Z			A_2 (Ra)	$16v_2 (\delta_s P(O_H)_2)$ $16v_2 (\tau P(O_H)_2)$
ν ₃	16	F_2	B ₁ —		- B ₁ (IR, Ra) -	$ \begin{array}{c} 16v_3 (v_s PO_2) \\ 16v_3 (v_{as} PO_2) \\ 16v_3 (v_{as} P(O_H)_2) \end{array} $
v_4	16	F ₂	B ₂		B_2 (IR, Ra)	$ \begin{array}{c} 16v_4(\delta_s \operatorname{PO}_2) \\ \hline \\ 16v_4(\rho \operatorname{PO}_2) \\ 16v_4(\omega \operatorname{PO}_2) \end{array} \end{array} $

FIGURES

Figure 1S: Atom numbering of the isomorphous crystals of $dat_2SO_42H_2O/dat_2SeO_42H_2O$. The dashed lines indicate the hydrogen bonds.

Figure 2S: Two structurally independent cationic chains in the crystals of $dat_2SO_42H_2O/dat_2SeO_42H_2O$ (view along [010] direction). The dashed lines indicate the hydrogen bonds.

Figure 3S: Atom numbering of datClO₄. The dashed lines indicate the hydrogen bonds.

Figure 4S: The hydrogen bonds (dashed lines) system in the layers of $datClO_4$ crystal structure.

Figure 5S: Atom numbering of datNO₃. The dashed lines indicate the hydrogen bonds.

Figure 6S: The hydrogen bonds (dashed lines) system in the layers of $datNO_3$ crystal structure.

Figure 7S: Atom numbering of dat₂Cl₂H₂O. The dashed lines indicate the hydrogen bonds.

Figure 8S: Packing scheme of the cations in the crystal of $dat_2Cl_2H_2O$ (view along [100] direction). The dashed lines indicate the hydrogen bonds.

Figure 9S: Atom numbering of datH₂PO₃. The dashed lines indicate the hydrogen bonds.

Figure 10S: Atom numbering of datH₂PO₄. The dashed lines indicate the hydrogen bonds.

