Syntheses of POM-templated MOFs Containing the Smart Isomerous

Pyridyltetrazole

Jing-Quan Sha^{a,b}, Jing-Wen Sun^b, Cheng Wang^a, Guang-Ming Li^a, Peng-Fei Yan^{a*},

Meng-Ting Li^b , Ming-Yuan Liu^b

^a School of Chemistry and Materials Science, Heilongjiang University, , Harbin 150080, P. R. China

^bSchool of Pharmacy, Jiamusi University, Jiamusi, 154007, P. R. China

Fig.S1 The IR spectra of compounds 1-4.

Fig.S2 The simulative (below) and experimental (up) XRPD patterns for compounds 1-4.

Table S 1 Bond lengths [Å] and angles [°] for compound 1.

W(1)-O(1)	1.675(13)	W(6)-O(6)	1.662(13)
W(1)-O(22)	1.88(2)	W(6)-O(3)#1	1.878(18)
W(1)-O(7)	1.896(19)	W(6)-O(4)#1	1.895(17)
W(1)-O(11)	1.899(18)	W(6)-O(7)	1.907(19)
W(1)-O(19)	1.941(19)	W(6)-O(5)	1.912(18)
W(1)-O(20)	2.48(2)	W(6)-O(20)	2.44(2)
W(1)-O(8)	2.50(2)	W(6)-O(21)#1	2.51(2)
W(2)-O(9)	1.671(16)	Ag(1)-N(9)	1.972(15)
W(2)-O(5)	1.861(17)	Ag(1)-N(5)#2	2.021(14)
W(2)-O(15)	1.865(13)	Ag(1)-N(7)	2.043(14)
W(2)-O(22)	1.887(16)	Ag(1)-N(10)#2	2.053(14)
W(2)-O(18)	1.909(14)	Ag(1)-N(1)	2.221(16)
W(2)-O(20)	2.36(2)	Ag(1)-O(2)#3	2.726(15)
W(2)-O(12)	2.53(2)	Ag(2)-N(2)	2.283(15)
W(3)-O(14)	1.664(17)	Ag(2)-N(4)	2.286(15)
W(3)-O(19)	1.853(15)	Ag(2)-OW2	2.40(2)
W(3)-O(17)	1.868(16)	Ag(2)-O(6)	2.497(13)
W(3)-O(13)	1.892(16)	Ag(2)-Ag(3)	3.483(2)

W(3)-O(15)#1	1.920(13)	Ag(3)-N(8)	2.244(15)
W(3)-O(8)	2.39(2)	Ag(3)-N(6)	2.262(15)
W(3)-O(12)#1	2.50(2)	Ag(3)-N(11)#4	2.275(14)
W(4)-O(16)	1.649(15)	P(1)-O(12)#1	1.47(2)
W(4)-O(10)	1.855(17)	P(1)-O(12)	1.47(2)
W(4)-O(3)	1.887(16)	P(1)-O(21)#1	1.49(2)
W(4)-O(18)	1.892(13)	P(1)-O(21)	1.49(2)
W(4)-O(17)#1	1.912(15)	P(1)-O(8)	1.57(2)
W(4)-O(21)	2.42(2)	P(1)-O(8)#1	1.57(2)
W(4)-O(12)	2.46(2)	P(1)-O(20)	1.59(2)
W(5)-O(2)	1.643(14)	P(1)-O(20)#1	1.59(2)
W(5)-O(4)	1.874(16)	O(2)-Ag(1)#5	2.726(14)
W(5)-O(10)	1.895(19)	O(3)-W(6)#1	1.878(18)
W(5)-O(11)	1.904(15)	O(4)-W(6)#1	1.895(17)
W(5)-O(13)	1.909(19)	O(12)-W(3)#1	2.50(2)
W(5)-O(8)	2.43(2)	O(15)-W(3)#1	1.920(13)
W(5)-O(21)	2.49(2)	O(17)-W(4)#1	1.912(15)
O(21)-O(20)#1	1.84(3)	O(20)-O(21)#1	1.84(3)
O(1)-W(1)-O(22)	101.8(9)	O(14)-W(3)-O(19)	102.7(11)
O(1)-W(1)-O(7)	100.3(8)	O(14)-W(3)-O(17)	101.8(9)
O(22)-W(1)-O(7)	87.4(8)	O(19)-W(3)-O(17)	91.5(8)
O(1)-W(1)-O(11)	100.2(9)	O(14)-W(3)-O(13)	100.4(11)
O(22)-W(1)-O(11)	92.1(9)	O(19)-W(3)-O(13)	87.2(7)
O(7)-W(1)-O(11)	159.1(9)	O(17)-W(3)-O(13)	157.4(10)
O(1)-W(1)-O(19)	101.0(9)	O(14)-W(3)-O(15)#1	100.7(8)
O(22)-W(1)-O(19)	157.2(11)	O(19)-W(3)-O(15)#1	156.4(9)
O(7)-W(1)-O(19)	87.7(9)	O(17)-W(3)-O(15)#1	87.2(6)
O(11)-W(1)-O(19)	84.7(8)	O(13)-W(3)-O(15)#1	85.0(7)
O(1)-W(1)-O(20)	157.5(7)	O(14)-W(3)-O(8)	160.3(9)
O(22)-W(1)-O(20)	62.2(9)	O(19)-W(3)-O(8)	65.3(9)
O(7)-W(1)-O(20)	65.1(8)	O(17)-W(3)-O(8)	94.3(8)
O(11)-W(1)-O(20)	96.3(9)	O(13)-W(3)-O(8)	64.8(9)
O(19)-W(1)-O(20)	95.6(9)	O(15)#1-W(3)-O(8)	91.2(7)
O(1)-W(1)-O(8)	156.9(7)	O(14)-W(3)-O(12)#1	158.8(9)
O(22)-W(1)-O(8)	96.2(10)	O(19)-W(3)-O(12)#1	93.6(10)
O(7)-W(1)-O(8)	94.9(9)	O(17)-W(3)-O(12)#1	63.8(8)
O(11)-W(1)-O(8)	64.4(8)	O(13)-W(3)-O(12)#1	93.7(10)
O(19)-W(1)-O(8)	62.0(8)	O(15)#1-W(3)-O(12)#	64.7(7)
O(20)-W(1)-O(8)	45.6(7)	O(8)-W(3)-O(12)#1	40.7(7)
O(9)-W(2)-O(5)	102.5(9)	O(16)-W(4)-O(10)	104.4(11)
O(9)-W(2)-O(15)	102.2(8)	O(16)-W(4)-O(3)	101.5(9)
O(5)-W(2)-O(15)	89.3(7)	O(10)-W(4)-O(3)	86.4(7)
O(9)-W(2)-O(22)	101.3(11)	O(16)-W(4)-O(18)	101.6(9)
O(5)-W(2)-O(22)	87.6(7)	O(10)-W(4)-O(18)	89.8(7)

O(15)-W(2)-O(22)	156.4(10)	O(3)-W(4)-O(18)	156.8(9)
O(9)-W(2)-O(18)	100.9(8)	O(16)-W(4)-O(17)#1	100.4(10)
O(5)-W(2)-O(18)	156.4(9)	O(10)-W(4)-O(17)#1	155.0(10)
O(15)-W(2)-O(18)	88.9(6)	O(3)-W(4)-O(17)#1	85.6(7)
O(22)-W(2)-O(18)	84.7(8)	O(18)-W(4)-O(17)#1	88.4(6)
O(9)-W(2)-O(20)	159.2(8)	O(16)-W(4)-O(21)	161.1(10)
O(5)-W(2)-O(20)	63.4(9)	O(10)-W(4)-O(21)	63.5(9)
O(15)-W(2)-O(20)	93.2(7)	O(3)-W(4)-O(21)	64.7(8)
O(22)-W(2)-O(20)	64.6(10)	O(18)-W(4)-O(21)	93.2(8)
O(18)-W(2)-O(20)	93.2(8)	O(17)#1-W(4)-O(21)	91.7(8)
O(9)-W(2)-O(12)	159.5(8)	O(16)-W(4)-O(12)	159.6(10)
O(5)-W(2)-O(12)	93.4(9)	O(10)-W(4)-O(12)	92.4(9)
O(15)-W(2)-O(12)	64.6(7)	O(3)-W(4)-O(12)	90.9(8)
O(22)-W(2)-O(12)	92.2(10)	O(18)-W(4)-O(12)	66.4(7)
O(18)-W(2)-O(12)	64.7(7)	O(17)#1-W(4)-O(12)	64.1(8)
O(20)-W(2)-O(12)	41.3(7)	O(21)-W(4)-O(12)	39.1(7)
N(9)-Ag(1)-N(5)#2	95.2(6)	O(2)-W(5)-O(4)	101.7(8)
N(9)-Ag(1)-N(7)	79.2(6)	O(2)-W(5)-O(10)	103.6(9)
N(5)#2-Ag(1)-N(7)	173.5(6)	O(4)-W(5)-O(10)	86.6(7)
N(9)-Ag(1)-N(10)#2	161.5(6)	O(2)-W(5)-O(11)	100.6(9)
N(5)#2-Ag(1)-N(10)#2	80.0(6)	O(4)-W(5)-O(11)	157.7(10)
N(7)-Ag(1)-N(10)#2	104.2(6)	O(10)-W(5)-O(11)	86.9(8)
N(9)-Ag(1)-N(1)	101.1(6)	O(2)-W(5)-O(13)	99.9(9)
N(5)#2-Ag(1)-N(1)	94.7(6)	O(4)-W(5)-O(13)	90.1(8)
N(7)-Ag(1)-N(1)	89.8(6)	O(10)-W(5)-O(13)	156.4(10)
N(10)#2-Ag(1)-N(1)	97.1(6)	O(11)-W(5)-O(13)	87.4(7)
N(9)-Ag(1)-O(2)#3	87.2(5)	O(2)-W(5)-O(8)	158.1(7)
N(5)#2-Ag(1)-O(2)#3	86.7(5)	O(4)-W(5)-O(8)	93.2(8)
N(7)-Ag(1)-O(2)#3	89.6(5)	O(10)-W(5)-O(8)	93.1(9)
N(10)#2-Ag(1)-O(2)#3	74.7(5)	O(11)-W(5)-O(8)	65.8(9)
N(1)-Ag(1)-O(2)#3	171.3(6)	O(13)-W(5)-O(8)	63.7(9)
N(2)-Ag(2)-N(4)	122.0(6)	O(2)-W(5)-O(21)	159.5(7)
N(2)-Ag(2)-OW2	111.1(8)	O(4)-W(5)-O(21)	65.3(8)
N(4)-Ag(2)-OW2	112.0(7)	O(10)-W(5)-O(21)	61.4(8)
N(2)-Ag(2)-O(6)	115.9(5)	O(11)-W(5)-O(21)	92.9(9)
N(4)-Ag(2)-O(6)	107.9(5)	O(13)-W(5)-O(21)	96.0(9)
OW2-Ag(2)-O(6)	80.5(6)	O(8)-W(5)-O(21)	42.4(7)
N(2)-Ag(2)-Ag(3)	62.6(4)	O(6)-W(6)-O(3)#1	101.8(8)
N(4)-Ag(2)-Ag(3)	63.6(4)	O(6)-W(6)-O(4)#1	101.5(8)
OW2-Ag(2)-Ag(3)	118.2(5)	O(3)#1-W(6)-O(4)#1	87.6(7)
O(6)-Ag(2)-Ag(3)	160.9(4)	O(6)-W(6)-O(7)	100.5(9)
N(8)-Ag(3)-N(6)	118.5(5)	O(3)#1-W(6)-O(7)	91.2(8)
N(8)-Ag(3)-N(11)#4	127.9(5)	O(4)#1-W(6)-O(7)	157.8(9)
N(6)-Ag(3)-N(11)#4	112.4(5)	O(6)-W(6)-O(5)	102.3(8)

N(8)-Ag(3)-Ag(2)	60.4(4)	O(3)#1-W(6)-O(5)	155.8(9)
N(6)-Ag(3)-Ag(2)	60.7(4)	O(4)#1-W(6)-O(5)	85.2(8)
N(11)#4-Ag(3)-Ag(2)	151.7(4)	O(7)-W(6)-O(5)	86.9(8)
O(12)#1-P(1)-O(12)	180(4)	O(6)-W(6)-O(20)	157.9(8)
O(12)#1-P(1)-O(21)#1	67.0(12)	O(3)#1-W(6)-O(20)	96.1(8)
O(12)-P(1)-O(21)#1	113.0(12)	O(4)#1-W(6)-O(20)	92.1(8)
O(12)#1-P(1)-O(21)	113.0(12)	O(7)-W(6)-O(20)	65.9(8)
O(12)-P(1)-O(21)	67.0(12)	O(5)-W(6)-O(20)	61.2(8)
O(21)#1-P(1)-O(21)	180.000(3)	O(6)-W(6)-O(21)#1	158.5(8)
O(12)#1-P(1)-O(8)	68.2(12)	O(3)#1-W(6)-O(21)#1	62.8(8)
O(12)-P(1)-O(8)	111.8(12)	O(4)#1-W(6)-O(21)#1	64.8(7)
O(21)#1-P(1)-O(8)	108.8(11)	O(7)-W(6)-O(21)#1	95.0(9)
O(21)-P(1)-O(8)	71.2(11)	O(5)-W(6)-O(21)#1	93.3(8)
O(12)#1-P(1)-O(8)#1	111.8(12)	O(20)-W(6)-O(21)#1	43.6(7)
O(12)-P(1)-O(8)#1	68.2(12)	O(12)#1-P(1)-O(20)#1	68.8(11)
O(21)#1-P(1)-O(8)#1	71.2(11)	O(12)-P(1)-O(20)#1	111.2(11)
O(21)-P(1)-O(8)#1	108.8(11)	O(21)#1-P(1)-O(20)#1	106.9(12)
O(8)-P(1)-O(8)#1	180.000(5)	O(21)-P(1)-O(20)#1	73.1(11)
O(12)#1-P(1)-O(20)	111.2(11)	O(8)-P(1)-O(20)#1	104.7(11)
O(12)-P(1)-O(20)	68.8(11)	O(8)#1-P(1)-O(20)#1	75.3(11)
O(21)#1-P(1)-O(20)	73.1(12)	O(20)-P(1)-O(20)#1	180.000(5)
O(21)-P(1)-O(20)	106.9(12)	O(8)#1-P(1)-O(20)	104.7(11)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+1;#2 -x+1,y-1/2,-z+1/2;

#3-x,y-1/2,-z+1/2;#4 -x+1,-y,-z;#5-x,y+1/2,-z+1/2; #6 -x+1,y+1/2,-z+1/2.

Fable S2 Bond lengths [s [Å] and angles [°] for compound 2	2.
-------------------------	-------------------------------------	----

te ba bond tengths [71]	and angles [] for eo		
N(1)-Ag(2)	2.26(2)	O(10)-W(2)	1.884(19)
N(2)-N(1)#1	1.40(3)	O(10)-W(3)	1.885(18)
N(2)-Ag(2)#2	2.177(19)	O(11)-P(1)	1.41(3)
N(3)-N(8)	1.35(3)	O(11)-O(21)	1.58(4)
N(3)-N(4)	1.36(3)	O(11)-O(22)#4	1.66(4)
N(3)-Ag(2)	2.21(2)	O(11)-O(20)#4	1.83(4)
N(4)-N(5)	1.29(3)	O(20)-P(1)	1.58(3)
N(4)-Ag(4)	2.16(2)	O(20)-O(22)#4	1.75(4)
N(6)-Ag(4)#3	2.137(19)	O(20)-O(11)#4	1.83(4)
N(7)-N(10)#1	1.41(3)	O(20)-O(21)	1.79(4)
N(7)-Ag(3)	2.271(19)	O(20)-W(1)	2.40(3)
N(8)-Ag(3)	2.227(19)	O(20)-W(4)	2.40(3)
N(10)-N(7)#1	1.41(3)	O(20)-W(6)	2.49(3)
N(10)-Ag(3)	2.187(19)	O(21)-P(1)	1.46(3)
O(1)-W(5)	1.63(2)	O(21)-O(22)	1.67(4)
O(2)-W(2)	1.862(18)	O(21)-W(3)	2.44(3)
O(2)-W(1)	1.904(18)	O(21)-W(2)	2.50(3)
O(3)-W(4)#4	1.86(2)	O(22)-P(1)	1.47(3)
O(3)-W(2)	1.881(19)	O(22)-W(4)#4	2.50(3)

O(4)-W(6)	1.89(2)	O(22)-W(2)	2.46(3)
O(4)-W(4)	1.91(2)	P(1)-O(11)#4	1.41(3)
O(4)-Ag(1)	2.42(2)	P(1)-O(21)#4	1.46(3)
O(5)-W(6)#4	1.89(2)	P(1)-O(22)#4	1.47(3)
O(5)-W(3)	1.90(2)	P(1)-O(20)#4	1.58(3)
O(5)-Ag(1)#2	2.50(2)	Ag(1)-O(4)#5	2.42(2)
O(6)-W(3)	1.86(2)	Ag(1)-O(5)#4	2.50(2)
O(6)-W(1)	1.91(2)	Ag(1)-O(5)#6	2.50(2)
O(7)-W(4)	1.651(18)	Ag(1)-W(6)	3.2999(18)
O(8)-W(5)	1.86(2)	Ag(1)-W(6)#5	3.2999(18)
O(8)-W(4)#4	1.90(2)	Ag(2)-N(2)#6	2.177(19)
O(9)-W(6)	1.87(2)	Ag(4)-N(6)#3	2.137(19)
O(9)-W(1)	1.88(2)	W(4)-O(3)#4	1.86(2)
O(12)-W(6)	1.623(18)	W(4)-O(8)#4	1.90(2)
O(13)-W(6)	1.86(2)	W(4)-O(22)#4	2.50(3)
O(13)-W(5)	1.90(2)	W(5)-O(14)#4	1.84(2)
O(14)-W(5)#4	1.84(2)	W(6)-O(5)#4	1.89(2)
O(14)-W(3)	1.93(2)	O(16)-W(1)	1.686(18)
O(15)-W(2)	1.89(2)	O(17)-W(2)	1.68(2)
O(15)-W(5)	1.90(2)	O(18)-W(3)	1.674(19)
O(19)-W(1)	1.87(2)	O(19)-W(4)	1.87(2)
O(11)#4-P(1)-O(11)	180(2)	O(18)-W(3)-O(14)	100.7(9)
O(11)#4-P(1)-O(21)#4	66.9(17)	O(6)-W(3)-O(14)	86.0(9)
O(11)-P(1)-O(21)#4	113.1(17)	O(10)-W(3)-O(14)	157.6(9)
O(11)#4-P(1)-O(21)	113.1(17)	O(5)-W(3)-O(14)	86.9(10)
O(11)-P(1)-O(21)	66.9(17)	O(18)-W(3)-O(21)	161.5(9)
O(21)#4-P(1)-O(21)	180.0(19)	O(6)-W(3)-O(21)	66.0(10)
O(11)#4-P(1)-O(22)	70.5(17)	O(10)-W(3)-O(21)	65.1(9)
O(11)-P(1)-O(22)	109.5(17)	O(5)-W(3)-O(21)	91.3(10)
O(21)#4-P(1)-O(22)	110.6(16)	O(14)-W(3)-O(21)	93.0(10)
O(21)-P(1)-O(22)	69.4(16)	O(7)-W(4)-O(19)	105.7(10)
O(11)#4-P(1)-O(22)#4	109.5(17)	O(7)-W(4)-O(3)#4	101.4(9)
O(11)-P(1)-O(22)#4	70.5(17)	O(19)-W(4)-O(3)#4	152.9(9)
O(21)#4-P(1)-O(22)#4	69.4(16)	O(7)-W(4)-O(8)#4	99.5(9)
O(21)-P(1)-O(22)#4	110.6(16)	O(19)-W(4)-O(8)#4	87.7(10)
O(22)-P(1)-O(22)#4	180.000(5)	O(3)#4-W(4)-O(8)#4	87.6(9)
O(11)#4-P(1)-O(20)#4	104.6(16)	O(7)-W(4)-O(4)	104.3(9)
O(11)-P(1)-O(20)#4	75.4(16)	O(19)-W(4)-O(4)	86.8(10)
O(21)#4-P(1)-O(20)#4	71.7(15)	O(3)#4-W(4)-O(4)	86.8(9)
O(21)-P(1)-O(20)#4	108.3(15)	O(8)#4-W(4)-O(4)	156.1(9)
O(22)-P(1)-O(20)#4	69.5(14)	O(7)-W(4)-O(20)	161.7(9)
O(22)#4-P(1)-O(20)#4	110.5(14)	O(19)-W(4)-O(20)	61.3(10)
O(11)#4-P(1)-O(20)	75.4(16)	O(3)#4-W(4)-O(20)	92.4(9)
O(11)-P(1)-O(20)	104.6(16)	O(8)#4-W(4)-O(20)	93.1(9)

O(21)#4-P(1)-O(20)	108.3(15)	O(4)-W(4)-O(20)	64.0(9)
O(21)-P(1)-O(20)	71.7(15)	O(7)-W(4)-O(22)#4	156.7(9)
O(22)-P(1)-O(20)	110.5(14)	O(19)-W(4)-O(22)#4	92.0(10)
O(22)#4-P(1)-O(20)	69.5(14)	O(3)#4-W(4)-O(22)#4	61.9(9)
O(20)#4-P(1)-O(20)	180.000(4)	O(8)#4-W(4)-O(22)#4	65.4(9)
O(4)#5-Ag(1)-O(4)	180.000(1)	O(4)-W(4)-O(22)#4	91.5(9)
O(4)#5-Ag(1)-O(5)#4	117.1(7)	O(20)-W(4)-O(22)#4	41.7(9)
O(4)-Ag(1)-O(5)#4	62.9(7)	O(1)-W(5)-O(8)	100.3(10)
O(4)#5-Ag(1)-O(5)#6	62.9(7)	O(1)-W(5)-O(14)#4	101.8(10)
O(4)-Ag(1)-O(5)#6	117.1(7)	O(8)-W(5)-O(14)#4	91.1(10)
O(5)#4-Ag(1)-O(5)#6	180.000(1)	O(1)-W(5)-O(15)	101.4(10)
O(4)#5-Ag(1)-W(6)	145.7(5)	O(8)-W(5)-O(15)	88.5(9)
O(4)-Ag(1)-W(6)	34.3(5)	O(14)#4-W(5)-O(15)	156.5(9)
O(5)#4-Ag(1)-W(6)	34.8(5)	O(1)-W(5)-O(13)	102.3(9)
O(5)#6-Ag(1)-W(6)	145.2(5)	O(8)-W(5)-O(13)	157.4(9)
O(4)#5-Ag(1)-W(6)#5	34.3(5)	O(14)#4-W(5)-O(13)	85.8(9)
O(4)-Ag(1)-W(6)#5	145.7(5)	O(15)-W(5)-O(13)	85.7(9)
O(5)#4-Ag(1)-W(6)#5	145.2(5)	O(12)-W(6)-O(13)	102.9(9)
O(5)#6-Ag(1)-W(6)#5	34.8(5)	O(12)-W(6)-O(9)	102.2(9)
W(6)-Ag(1)-W(6)#5	180.00(4)	O(13)-W(6)-O(9)	91.2(9)
N(2)#6-Ag(2)-N(3)	138.6(7)	O(12)-W(6)-O(4)	101.1(9)
N(2)#6-Ag(2)-N(1)	108.9(7)	O(13)-W(6)-O(4)	155.8(9)
N(3)-Ag(2)-N(1)	110.6(7)	O(9)-W(6)-O(4)	86.9(10)
N(10)-Ag(3)-N(8)	131.3(7)	O(12)-W(6)-O(5)#4	101.8(10)
N(10)-Ag(3)-N(7)	119.8(7)	O(13)-W(6)-O(5)#4	86.1(9)
N(8)-Ag(3)-N(7)	109.0(7)	O(9)-W(6)-O(5)#4	155.9(10)
N(6)#3-Ag(4)-N(4)	170.6(8)	O(4)-W(6)-O(5)#4	85.8(9)
O(16)-W(1)-O(19)	104.1(10)	O(12)-W(6)-O(20)	156.3(9)
O(16)-W(1)-O(9)	99.5(9)	O(13)-W(6)-O(20)	95.6(9)
O(19)-W(1)-O(9)	86.8(10)	O(9)-W(6)-O(20)	62.3(9)
O(16)-W(1)-O(6)	105.2(9)	O(4)-W(6)-O(20)	62.3(9)
O(19)-W(1)-O(6)	87.6(10)	O(5)#4-W(6)-O(20)	94.0(9)
O(9)-W(1)-O(6)	155.3(9)	O(12)-W(6)-Ag(1)	82.5(6)
O(16)-W(1)-O(2)	101.8(8)	O(13)-W(6)-Ag(1)	134.4(6)
O(19)-W(1)-O(2)	153.8(9)	O(9)-W(6)-Ag(1)	132.5(7)
O(9)-W(1)-O(2)	85.8(9)	O(4)-W(6)-Ag(1)	46.4(7)
O(6)-W(1)-O(2)	88.7(9)	O(5)#4-W(6)-Ag(1)	49.0(7)
O(16)-W(1)-O(20)	157.5(9)	O(20)-W(6)-Ag(1)	95.2(6)
O(19)-W(1)-O(20)	61.4(10)	O(10)-W(2)-O(21)	63.6(9)
O(9)-W(1)-O(20)	64.4(10)	O(3)-W(2)-O(21)	88.6(9)
O(6)-W(1)-O(20)	91.9(9)	O(15)-W(2)-O(21)	91.9(10)
O(2)-W(1)-O(20)	92.9(8)	O(22)-W(2)-O(21)	39.3(9)
O(17)-W(2)-O(2)	102.6(9)	O(18)-W(3)-O(6)	102.3(9)
O(17)-W(2)-O(10)	101.9(9)	O(18)-W(3)-O(10)	101.7(9)

O(2)-W(2)-O(10)	87.4(8)	O(6)-W(3)-O(10)	88.6(9)
O(17)-W(2)-O(3)	104.7(9)	O(18)-W(3)-O(5)	101.8(10)
O(2)-W(2)-O(3)	152.7(8)	O(6)-W(3)-O(5)	155.8(10)
O(10)-W(2)-O(3)	86.6(8)	O(10)-W(3)-O(5)	89.2(9)
O(17)-W(2)-O(15)	103.0(9)	O(3)-W(2)-O(22)	62.6(9)
O(2)-W(2)-O(15)	85.7(9)	O(15)-W(2)-O(22)	63.9(9)
O(10)-W(2)-O(15)	155.1(9)	O(17)-W(2)-O(21)	160.1(10)
O(3)-W(2)-O(15)	88.7(9)	O(2)-W(2)-O(21)	65.0(9)
O(17)-W(2)-O(22)	160.5(9)	O(2)-W(2)-O(22)	91.2(9)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+2; #2 x+1,y,z; #3 -x,-y+2,-z+1; #4 -x,-y+1,-z; #5 -x-1,-y+1,-z; #6 x-1,y,z.

 Table S 3 Bond lengths [Å] and angles [°] for compound 3.

		r	
N(2)-Ag(2)	2.28(3)	O(9)-Si(1)	1.656(19)
N(6)-Ag(5)	2.25(3)	O(9)-W(11)	2.25(2)
N(7)-Ag(2)#3	2.26(2)	O(9)-W(6)	2.346(18)
N(9)-Ag(6)	2.11(3)	O(9)-W(7)	2.409(18)
N(10)-Ag(5)	2.31(2)	O(10)-W(4)	1.92(2)
N(11)-Ag(7)	2.22(2)	O(10)-W(10)	1.95(2)
N(12)-Ag(3)	2.35(3)	O(11)-W(4)	1.849(19)
N(13)-Ag(4)	2.55(3)	O(11)-W(7)	1.95(2)
N(14)-Ag(1)	2.14(3)	O(12)-W(11)	1.67(2)
N(15)-Ag(2)	2.30(2)	O(13)-W(11)	1.877(18)
N(16)-Ag(3)	2.22(3)	O(13)-W(12)	1.959(18)
N(16)-K	3.05(3)	O(14)-W(5)	1.880(18)
N(17)-Ag(7)#1	2.24(3)	O(14)-W(10)	1.955(18)
N(18)-Ag(4)	2.21(2)	O(15)-W(3)	1.90(2)
N(19)-N(21)	1.35(3)	O(15)-W(12)	1.93(2)
N(19)-Ag(3)	2.21(2)	O(16)-W(10)	1.890(19)
N(20)-Ag(4)	2.19(3)	O(16)-W(1)	1.89(2)
N(21)-Ag(5)	2.34(2)	O(17)-W(7)	1.91(2)
N(22)-Ag(1)	2.09(3)	O(17)-W(11)	1.946(19)
N(24)-Ag(6)#5	2.15(3)	O(18)-W(12)	1.70(2)
N(26)-K	2.30(3)	O(18)-K#3	2.76(2)
O(1)-W(8)	1.908(19)	O(19)-W(8)	1.907(19)
O(1)-W(9)	1.942(19)	O(19)-W(2)	1.934(18)
O(2)-W(3)	1.877(18)	O(19)-K	3.093(19)
O(2)-W(9)	1.927(18)	O(20)-W(10)	1.89(2)
O(3)-W(9)	1.88(2)	O(20)-W(6)	1.90(2)
O(3)-W(5)	1.919(19)	O(21)-W(1)	1.93(2)
O(4)-Si(1)	1.63(2)	O(21)-W(12)	1.94(2)
O(4)-W(2)	2.30(2)	O(21)-K#3	3.34(2)
O(4)-W(8)	2.362(19)	O(22)-W(8)	1.827(19)
O(4)-W(9)	2.387(19)	O(22)-W(7)	1.955(19)
O(5)-W(4)	1.958(18)	O(23)-W(6)	1.93(2)

	4.070(4.0)		4.05(2)
O(5)-W(5)	1.970(19)	O(23)-W(11)	1.95(2)
O(6)-Si(1)	1.64(2)	O(24)-W(2)	1.68(2)
O(6)-W(5)	2.330(19)	O(24)-Ag(3)	2.57(2)
O(6)-W(4)	2.331(19)	O(25)-W(3)	1.72(2)
O(6)-W(10)	2.339(19)	O(26)-W(6)	1.70(2)
O(7)-W(4)	1.73(2)	O(27)-W(7)	1.67(2)
O(7)-Ag(1)#6	2.59(2)	O(28)-W(8)	1.74(2)
O(8)-Si(1)	1.633(18)	О(28)-К	2.73(3)
O(8)-W(12)	2.341(18)	O(29)-W(7)	1.911(19)
O(8)-W(1)	2.349(17)	O(29)-W(6)	1.934(19)
O(8)-W(3)	2.353(17)	O(30)-W(1)	1.69(2)
O(31)-W(12)	1.96(2)	O(31)-W(2)	1.86(2)
O(32)-W(11)	1.86(2)	Ag(1)-O(40)#7	2.53(2)
O(32)-W(2)	1.947(19)	Ag(1)-O(7)#8	2.59(2)
O(33)-W(2)	1.91(2)	Ag(2)-N(7)#4	2.26(2)
O(33)-W(9)	1.97(2)	Ag(3)-K	3.645(7)
O(34)-W(9)	1.722(19)	Ag(5)-K	2.942(7)
O(35)-W(5)	1.72(2)	Ag(6)-N(24)#5	2.15(3)
O(36)-W(8)	1.90(2)	Ag(6)-Ag(7)#9	3.376(5)
O(36)-W(4)	1.92(2)	W(8)-K	3.678(7)
O(37)-W(3)	1.87(2)	W(12)-K#3	3.885(7)
O(37)-W(5)	1.93(2)	Ag(7)-N(17)#1	2.24(3)
O(38)-W(6)	1.90(2)	Ag(7)-Ag(6)#9	3.376(5)
O(38)-W(1)	1.93(2)	K-O(18)#4	2.76(2)
O(39)-W(1)	1.921(19)	K-O(21)#4	3.34(2)
O(39)-W(3)	1.946(19)	K-W(12)#4	3.885(7)
O(40)-W(10)	1.73(2)	O(40)-Ag(1)#7	2.53(2)
O(4)-Si(1)-O(8)	108.6(10)	N(9)-Ag(6)-Ag(7)#9	85.3(8)
O(4)-Si(1)-O(6)	110.8(11)	N(24)#5-Ag(6)-Ag(7)#9	93.8(9)
O(8)-Si(1)-O(6)	110.6(10)	O(30)-W(1)-O(16)	101.5(10)
O(4)-Si(1)-O(9)	106.6(10)	O(30)-W(1)-O(39)	99.2(9)
O(8)-Si(1)-O(9)	107.7(10)	O(16)-W(1)-O(39)	90.3(8)
O(6)-Si(1)-O(9)	112.4(10)	O(30)-W(1)-O(21)	100.5(10)
N(22)-Ag(1)-N(14)	170.6(11)	O(16)-W(1)-O(21)	158.0(8)
N(22)-Ag(1)-O(40)#7	93.7(9)	O(39)-W(1)-O(21)	87.6(9)
N(14)-Ag(1)-O(40)#7	83.4(9)	O(30)-W(1)-O(38)	102.8(9)
N(22)-Ag(1)-O(7)#8	102.6(9)	O(16)-W(1)-O(38)	85.1(9)
N(14)-Ag(1)-O(7)#8	86.7(9)	O(39)-W(1)-O(38)	158.0(8)
O(40)#7-Ag(1)-O(7)#8	95.2(7)	O(21)-W(1)-O(38)	88.7(9)
N(7)#4-Ag(2)-N(2)	126.0(8)	O(30)-W(1)-O(8)	170.6(8)
N(7)#4-Ag(2)-N(15)	115.1(8)	O(16)-W(1)-O(8)	84.9(7)
N(2)-Ag(2)-N(15)	118.9(9)	O(39)-W(1)-O(8)	73.6(7)
N(19)-Ag(3)-N(16)	135 9(9)	O(21)-W(1)-O(8)	73.5(8)
$N(19) - \Delta g(2) - N(12)$	103 5(9)	O(38)-(N/(1)-O(8))	84 5(7)
N(19)-Ag(3)-N(12)	103.5(9)	O(38)-W(1)-O(8)	84.5(7)

N(16)-Ag(3)-N(12)	119.0(10)	O(24)-W(2)-O(31)	101.2(10)
N(19)-Ag(3)-O(24)	113.9(7)	O(24)-W(2)-O(33)	101.3(9)
N(16)-Ag(3)-O(24)	88.1(8)	O(31)-W(2)-O(33)	89.2(9)
N(12)-Ag(3)-O(24)	76.9(8)	O(24)-W(2)-O(19)	99.1(9)
N(20)-Ag(4)-N(18)	150.0(10)	O(31)-W(2)-O(19)	159.5(9)
N(20)-Ag(4)-N(13)	101.8(10)	O(33)-W(2)-O(19)	90.0(8)
N(18)-Ag(4)-N(13)	108.0(9)	O(24)-W(2)-O(32)	99.3(9)
N(6)-Ag(5)-N(10)	114.8(9)	O(31)-W(2)-O(32)	86.9(9)
N(6)-Ag(5)-N(21)	110.2(9)	O(33)-W(2)-O(32)	159.3(9)
N(10)-Ag(5)-N(21)	110.3(8)	O(19)-W(2)-O(32)	86.6(8)
N(9)-Ag(6)-N(24)#5	175.3(13)	O(24)-W(2)-O(4)	172.1(8)
O(14)-W(5)-O(6)	73.3(8)	O(31)-W(2)-O(4)	86.4(8)
O(3)-W(5)-O(6)	84.2(7)	O(33)-W(2)-O(4)	76.3(8)
O(37)-W(5)-O(6)	85.8(8)	O(19)-W(2)-O(4)	73.5(7)
O(5)-W(5)-O(6)	73.2(7)	O(32)-W(2)-O(4)	83.1(8)
O(26)-W(6)-O(38)	104.6(9)	O(25)-W(3)-O(37)	104.8(10)
O(26)-W(6)-O(20)	103.4(9)	O(25)-W(3)-O(2)	104.7(9)
O(38)-W(6)-O(20)	87.7(9)	O(37)-W(3)-O(2)	87.3(9)
O(26)-W(6)-O(23)	96.4(9)	O(25)-W(3)-O(15)	97.6(10)
O(38)-W(6)-O(23)	90.7(9)	O(37)-W(3)-O(15)	157.1(9)
O(20)-W(6)-O(23)	159.8(9)	O(2)-W(3)-O(15)	91.5(9)
O(26)-W(6)-O(29)	96.3(9)	O(25)-W(3)-O(39)	97.2(10)
O(38)-W(6)-O(29)	159.1(8)	O(37)-W(3)-O(39)	85.8(9)
O(20)-W(6)-O(29)	87.7(8)	O(2)-W(3)-O(39)	158.1(8)
O(23)-W(6)-O(29)	86.6(8)	O(15)-W(3)-O(39)	86.9(9)
O(26)-W(6)-O(9)	165.8(8)	O(25)-W(3)-O(8)	166.5(9)
O(38)-W(6)-O(9)	85.1(8)	O(37)-W(3)-O(8)	84.1(8)
O(20)-W(6)-O(9)	87.1(8)	O(2)-W(3)-O(8)	85.5(7)
O(23)-W(6)-O(9)	72.7(8)	O(15)-W(3)-O(8)	73.1(8)
O(29)-W(6)-O(9)	74.3(7)	O(39)-W(3)-O(8)	73.1(7)
O(27)-W(7)-O(17)	101.0(10)	O(7)-W(4)-O(11)	101.5(9)
O(27)-W(7)-O(29)	100.8(10)	O(7)-W(4)-O(36)	101.4(10)
O(17)-W(7)-O(29)	88.7(9)	O(11)-W(4)-O(36)	85.7(9)
O(27)-W(7)-O(22)	103.2(10)	O(7)-W(4)-O(10)	98.7(9)
O(17)-W(7)-O(22)	87.4(8)	O(11)-W(4)-O(10)	92.0(9)
O(29)-W(7)-O(22)	156.0(8)	O(36)-W(4)-O(10)	159.9(9)
O(27)-W(7)-O(11)	102.3(10)	O(7)-W(4)-O(5)	99.0(9)
O(17)-W(7)-O(11)	156.4(8)	O(11)-W(4)-O(5)	159.5(8)
O(29)-W(7)-O(11)	90.6(8)	O(36)-W(4)-O(5)	88.7(8)
O(22)-W(7)-O(11)	83.8(8)	O(10)-W(4)-O(5)	86.6(8)
O(27)-W(7)-O(9)	170.0(9)	O(7)-W(4)-O(6)	169.0(9)
O(17)-W(7)-O(9)	71.3(7)	O(11)-W(4)-O(6)	86.6(8)
O(29)-W(7)-O(9)	73.2(7)	O(36)-W(4)-O(6)	86.6(8)
O(22)-W(7)-O(9)	83.2(7)	O(10)-W(4)-O(6)	73.3(8)

O(11)-W(7)-O(9)	85.9(7)	O(5)-W(4)-O(6)	73.4(7)
O(28)-W(8)-O(22)	101.7(10)	O(35)-W(5)-O(14)	98.6(9)
O(28)-W(8)-O(36)	102.8(11)	O(35)-W(5)-O(3)	103.5(9)
O(22)-W(8)-O(36)	87.0(9)	O(14)-W(5)-O(3)	157.4(8)
O(28)-W(8)-O(19)	98.7(10)	O(35)-W(5)-O(37)	106.1(9)
O(22)-W(8)-O(19)	89.7(8)	O(14)-W(5)-O(37)	92.7(8)
O(36)-W(8)-O(19)	158.4(8)	O(3)-W(5)-O(37)	85.6(8)
O(28)-W(8)-O(1)	99.8(10)	O(35)-W(5)-O(5)	95.5(9)
O(22)-W(8)-O(1)	158.5(8)	O(14)-W(5)-O(5)	86.9(8)
O(36)-W(8)-O(1)	88.2(9)	O(3)-W(5)-O(5)	86.5(8)
O(19)-W(8)-O(1)	87.1(8)	O(37)-W(5)-O(5)	158.2(8)
O(28)-W(8)-O(4)	169.0(10)	O(35)-W(5)-O(6)	166.1(8)
O(22)-W(8)-O(4)	85.2(8)	O(32)-W(11)-O(17)	88.6(8)
O(36)-W(8)-O(4)	85.9(8)	O(13)-W(11)-O(17)	160.1(8)
O(19)-W(8)-O(4)	72.5(7)	O(12)-W(11)-O(23)	99.3(9)
O(1)-W(8)-O(4)	73.5(7)	O(32)-W(11)-O(23)	159.5(9)
O(28)-W(8)-K	44.8(9)	O(13)-W(11)-O(23)	87.2(8)
O(22)-W(8)-K	114.2(6)	O(17)-W(11)-O(23)	87.9(8)
O(36)-W(8)-K	142.5(6)	O(12)-W(11)-O(9)	169.1(8)
O(19)-W(8)-K	57.2(6)	O(32)-W(11)-O(9)	84.9(8)
O(1)-W(8)-K	81.6(6)	O(13)-W(11)-O(9)	85.6(8)
O(4)-W(8)-K	124.6(5)	O(17)-W(11)-O(9)	74.5(8)
O(34)-W(9)-O(3)	102.4(9)	O(23)-W(11)-O(9)	74.7(8)
O(34)-W(9)-O(2)	102.6(9)	O(18)-W(12)-O(15)	98.7(9)
O(3)-W(9)-O(2)	85.1(8)	O(18)-W(12)-O(21)	97.5(9)
O(34)-W(9)-O(1)	101.1(9)	O(15)-W(12)-O(21)	86.6(9)
O(3)-W(9)-O(1)	91.7(8)	O(18)-W(12)-O(31)	104.4(10)
O(2)-W(9)-O(1)	156.2(8)	O(15)-W(12)-O(31)	87.6(9)
O(34)-W(9)-O(33)	99.9(9)	O(21)-W(12)-O(31)	157.9(9)
O(3)-W(9)-O(33)	157.4(8)	O(18)-W(12)-O(13)	103.2(9)
O(2)-W(9)-O(33)	86.5(8)	O(15)-W(12)-O(13)	158.0(9)
O(1)-W(9)-O(33)	87.6(8)	O(21)-W(12)-O(13)	88.5(8)
O(34)-W(9)-O(4)	170.6(8)	O(31)-W(12)-O(13)	88.9(8)
O(3)-W(9)-O(4)	84.8(8)	O(18)-W(12)-O(8)	167.8(8)
O(2)-W(9)-O(4)	83.9(7)	O(15)-W(12)-O(8)	72.8(8)
O(1)-W(9)-O(4)	72.4(7)	O(21)-W(12)-O(8)	73.6(8)
O(33)-W(9)-O(4)	73.4(8)	O(31)-W(12)-O(8)	84.3(8)
O(40)-W(10)-O(16)	103.4(10)	O(13)-W(12)-O(8)	85.2(7)
O(40)-W(10)-O(20)	102.1(10)	O(18)-W(12)-K#3	38.3(7)
O(16)-W(10)-O(20)	89.1(9)	O(15)-W(12)-K#3	93.2(7)
O(40)-W(10)-O(10)	99.3(10)	O(21)-W(12)-K#3	59.3(6)
O(16)-W(10)-O(10)	157.0(8)	O(31)-W(12)-K#3	142.4(6)
O(20)-W(10)-O(10)	89.7(8)	O(13)-W(12)-K#3	102.7(6)
O(40)-W(10)-O(14)	100.3(10)	O(8)-W(12)-K#3	131.7(4)

O(16)-W(10)-O(14)	89.2(8)	N(11)-Ag(7)-N(17)#1	123.1(10)
O(20)-W(10)-O(14)	157.3(8)	N(11)-Ag(7)-Ag(6)#9	104.2(6)
O(10)-W(10)-O(14)	83.2(8)	N(17)#1-Ag(7)-Ag(6)#9	84.9(8)
O(40)-W(10)-O(6)	169.1(9)	O(14)-W(10)-O(6)	71.8(7)
O(16)-W(10)-O(6)	84.3(8)	O(12)-W(11)-O(32)	101.2(10)
O(20)-W(10)-O(6)	85.5(8)	O(12)-W(11)-O(13)	103.3(9)
O(10)-W(10)-O(6)	72.7(8)	O(32)-W(11)-O(13)	89.3(8)

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+2,-z+2; #2 -x+1,-y+1,-z+1; #3 x+1,y,z; #4 x-1,y,z ; #5 -x+1,-y+3,-z+2; #6 x,y+1,z; #7 -x+2,-y+2,-z+1; #8 x,y-1,z ; #9 -x+1,-y+2,-z+2

 Table S4 Bond lengths [Å] and angles [°] for compound 4.

N(1)-Ag(5)	2.236(17)	O(17)-Mo(7)	1.990(13)
N(3)-Ag(4)#1	2.121(17)	O(18)-Mo(7)	1.882(13)
N(6)-Ag(2)	2.121(17)	O(18)-Mo(1)	2.023(12)
N(7)-Ag(6)	2.358(16)	O(19)-Mo(1)	1.927(12)
N(8)-Ag(7)	2.481(16)	O(19)-Mo(6)	1.931(13)
N(9)-Ag(1)	2.271(16)	O(20)-Mo(1)	1.706(14)
N(11)-Ag(5)	2.265(14)	O(21)-Mo(11)	1.920(12)
N(12)-Ag(7)	2.190(16)	O(21)-Mo(5)	1.956(13)
N(14)-Ag(3)#2	2.270(16)	O(22)-Mo(6)	1.907(13)
N(15)-Ag(7)	2.180(16)	O(22)-Mo(11)	1.920(13)
N(16)-Ag(6)	2.254(16)	O(23)-Mo(4)	1.689(14)
N(17)-Ag(3)	2.387(17)	O(24)-Mo(3)	1.808(13)
N(18)-Ag(5)#3	2.343(16)	O(24)-Mo(2)	2.087(13)
N(19)-Ag(4)	2.190(17)	O(25)-Mo(9)	1.863(12)
N(20)-Ag(1)	2.19(2)	O(25)-Mo(12)	2.039(13)
N(22)-Na(1)	2.35(2)	O(26)-Mo(12)	1.909(13)
N(23)-Ag(2)#4	2.17(2)	O(26)-Mo(11)	1.988(13)
O(1)-Mo(8)	1.692(14)	O(27)-Mo(11)	1.906(14)
O(1)-Na(1)#5	2.811(17)	O(27)-Mo(9)	2.014(13)
O(2)-Mo(2)	1.692(14)	O(28)-Mo(1)	1.821(12)
O(3)-Mo(10)	1.692(13)	O(28)-Mo(10)	2.003(12)
O(3)-Ag(6)#6	2.576(13)	O(29)-Mo(7)	1.699(14)
O(4)-Mo(6)	1.687(14)	O(30)-Mo(8)	1.847(14)
O(5)-Mo(5)	1.672(14)	O(30)-Mo(1)	1.997(14)
O(5)-Na(1)#6	2.741(17)	O(31)-Mo(6)	1.830(13)
O(6)-Mo(11)	1.681(14)	O(31)-Mo(7)	2.037(13)
O(7)-Mo(12)	1.679(14)	O(8)-Mo(9)	1.676(14)
O(7)-Ag(4)#7	2.592(14)	O(33)-Mo(9)	1.858(13)
O(9)-Mo(3)	1.682(13)	O(33)-Mo(2)	1.985(13)
O(10)-Mo(3)	1.871(13)	O(34)-Mo(2)	1.837(13)
O(10)-Mo(12)	1.940(13)	O(34)-Mo(4)	2.001(14)
O(11)-Mo(8)	1.904(13)	O(35)-Mo(4)	1.853(13)

O(11)-Mo(3)	1.980(13)	O(35)-Mo(5)	2.029(13)
O(12)-Mo(2)	1.840(13)	O(40)-Mo(5)	1.815(13)
O(12)-Mo(8)	1.986(13)	O(40)-Mo(6)	2.033(12)
O(13)-Mo(10)	1.829(13)	O(36)-Ge(1)	1.697(12)
O(13)-Mo(4)	2.026(13)	O(36)-Mo(8)	2.300(12)
O(15)-Mo(4)	1.829(12)	O(36)-Mo(2)	2.309(12)
O(15)-Mo(9)	2.024(12)	O(36)-Mo(3)	2.329(12)
O(16)-Mo(5)	1.902(13)	O(37)-Ge(1)	1.753(11)
O(16)-Mo(10)	1.975(13)	O(37)-Mo(10)	2.269(12)
O(16)-Na(1)#6	2.992(16)	O(37)-Mo(5)	2.276(12)
O(17)-Mo(12)	1.815(13)	O(37)-Mo(4)	2.300(12)
Ag(1)-Ag(2)#6	3.370(3)	O(38)-Ge(1)	1.744(11)
Ag(2)-N(23)#8	2.17(2)	O(38)-Mo(1)	2.255(12)
Ag(2)-Ag(1)#6	3.370(3)	O(38)-Mo(7)	2.282(11)
Ag(3)-N(14)#3	2.270(16)	O(38)-Mo(6)	2.310(11)
Ag(3)-N(27)#5	2.338(16)	O(39)-Ge(1)	1.734(12)
Ag(3)-Na(1)	2.806(10)	O(39)-Mo(9)	2.268(12)
Ag(4)-N(3)#1	2.121(17)	O(39)-Mo(12)	2.281(11)
Ag(4)-O(7)#9	2.592(14)	O(39)-Mo(11)	2.307(12)
Ag(5)-N(18)#2	2.343(16)	Mo(3)-O(42)	2.076(14)
Ag(6)-N(28)	2.21(2)	Mo(5)-Na(1)#6	3.634(10)
Ag(6)-O(3)#6	2.576(13)	Mo(7)-O(42)	1.799(14)
Ag(6)-Na(1)	3.574(10)	Mo(8)-O(41)	1.905(13)
N(27)-Ag(3)#5	2.338(16)	Na(1)-O(1)#5	2.811(17)
Na(1)-O(5)#6	2.741(17)	Na(1)-O(16)#6	2.992(16)
O(36)-Ge(1)-O(39)	108.8(6)	O(6)-Mo(11)-O(26)	96.9(6)
O(36)-Ge(1)-O(38)	110.2(6)	O(27)-Mo(11)-O(26)	87.1(6)
O(39)-Ge(1)-O(38)	109.7(5)	O(21)-Mo(11)-O(26)	161.2(5)
O(36)-Ge(1)-O(37)	109.4(6)	O(22)-Mo(11)-O(26)	88.9(6)
O(39)-Ge(1)-O(37)	109.5(6)	O(6)-Mo(11)-O(39)	167.6(6)
O(38)-Ge(1)-O(37)	109.3(5)	O(27)-Mo(11)-O(39)	73.3(5)
O(20)-Mo(1)-O(28)	104.9(6)	O(21)-Mo(11)-O(39)	88.7(5)
O(20)-Mo(1)-O(19)	100.0(6)	O(22)-Mo(11)-O(39)	85.3(5)
O(28)-Mo(1)-O(19)	95.1(5)	O(26)-Mo(11)-O(39)	72.6(5)
O(20)-Mo(1)-O(30)	100.2(6)	O(7)-Mo(12)-O(17)	103.4(6)
O(28)-Mo(1)-O(30)	87.0(6)	O(7)-Mo(12)-O(26)	101.5(6)
O(19)-Mo(1)-O(30)	158.4(5)	O(17)-Mo(12)-O(26)	95.4(6)
O(20)-Mo(1)-O(18)	95.6(6)	O(7)-Mo(12)-O(10)	99.9(6)
O(28)-Mo(1)-O(18)	158.9(5)	O(17)-Mo(12)-O(10)	88.0(6)
O(19)-Mo(1)-O(18)	86.2(5)	O(26)-Mo(12)-O(10)	156.8(5)
O(30)-Mo(1)-O(18)	84.4(5)	O(7)-Mo(12)-O(25)	97.2(6)
O(20)-Mo(1)-O(38)	166.7(5)	O(17)-Mo(12)-O(25)	159.1(5)
O(28)-Mo(1)-O(38)	87.6(5)	O(26)-Mo(12)-O(25)	84.2(5)
O(19)-Mo(1)-O(38)	73.8(5)	O(10)-Mo(12)-O(25)	84.5(5)

O(30)-Mo(1)-O(38)	84.8(5)	O(7)-Mo(12)-O(39)	168.7(6)
O(18)-Mo(1)-O(38)	72.5(5)	O(17)-Mo(12)-O(39)	87.6(5)
O(2)-Mo(2)-O(34)	105.6(6)	O(26)-Mo(12)-O(39)	74.6(5)
O(2)-Mo(2)-O(12)	101.5(6)	O(10)-Mo(12)-O(39)	82.7(5)
O(34)-Mo(2)-O(12)	97.3(6)	O(25)-Mo(12)-O(39)	72.1(5)
O(2)-Mo(2)-O(33)	100.7(6)	N(20)-Ag(1)-N(9)	122.1(7)
O(34)-Mo(2)-O(33)	86.5(6)	N(6)-Ag(2)-N(23)#8	173.6(7)
O(12)-Mo(2)-O(33)	155.5(5)	N(6)-Ag(2)-Ag(1)#6	86.9(5)
O(2)-Mo(2)-O(24)	96.0(6)	N(14)#3-Ag(3)-N(27)#5	112.9(6)
O(34)-Mo(2)-O(24)	157.1(6)	N(14)#3-Ag(3)-N(17)	106.5(6)
O(12)-Mo(2)-O(24)	85.4(5)	N(27)#5-Ag(3)-N(17)	107.0(6)
O(33)-Mo(2)-O(24)	82.1(5)	N(3)#1-Ag(4)-N(19)	169.1(6)
O(2)-Mo(2)-O(36)	167.1(5)	N(3)#1-Ag(4)-O(7)#9	90.4(6)
O(34)-Mo(2)-O(36)	87.0(5)	N(19)-Ag(4)-O(7)#9	85.4(5)
O(12)-Mo(2)-O(36)	73.8(5)	N(1)-Ag(5)-N(11)	125.9(6)
O(33)-Mo(2)-O(36)	82.3(5)	N(1)-Ag(5)-N(18)#2	121.0(6)
O(24)-Mo(2)-O(36)	71.9(5)	N(11)-Ag(5)-N(18)#2	113.0(5)
O(9)-Mo(3)-O(24)	102.5(6)	N(28)-Ag(6)-N(16)	140.4(7)
O(9)-Mo(3)-O(10)	103.8(6)	N(28)-Ag(6)-N(7)	117.7(7)
O(24)-Mo(3)-O(10)	96.5(6)	N(16)-Ag(6)-N(7)	101.1(6)
O(9)-Mo(3)-O(11)	98.2(6)	N(28)-Ag(6)-O(3)#6	89.0(6)
O(24)-Mo(3)-O(11)	90.4(6)	N(16)-Ag(6)-O(3)#6	110.2(5)
O(10)-Mo(3)-O(11)	154.9(6)	N(7)-Ag(6)-O(3)#6	74.1(5)
O(9)-Mo(3)-O(42)	98.8(6)	N(15)-Ag(7)-N(12)	147.5(6)
O(24)-Mo(3)-O(42)	158.2(6)	N(15)-Ag(7)-N(8)	108.8(6)
O(10)-Mo(3)-O(42)	82.3(6)	N(12)-Ag(7)-N(8)	103.5(6)
O(11)-Mo(3)-O(42)	82.5(5)	Mo(8)-O(41)-Mo(10)	152.7(7)
O(9)-Mo(3)-O(36)	170.7(5)	Mo(7)-O(42)-Mo(3)	152.1(8)
O(24)-Mo(3)-O(36)	76.3(5)	O(30)-Mo(8)-O(11)	92.0(6)
O(10)-Mo(3)-O(36)	85.4(5)	O(1)-Mo(8)-O(41)	102.4(6)
O(11)-Mo(3)-O(36)	72.8(5)	O(30)-Mo(8)-O(41)	88.6(6)
O(42)-Mo(3)-O(36)	81.9(5)	O(11)-Mo(8)-O(41)	157.9(6)
O(23)-Mo(4)-O(15)	103.8(6)	O(1)-Mo(8)-O(12)	97.7(6)
O(23)-Mo(4)-O(35)	102.3(6)	O(30)-Mo(8)-O(12)	158.4(6)
O(15)-Mo(4)-O(35)	99.3(6)	O(11)-Mo(8)-O(12)	86.7(5)
O(23)-Mo(4)-O(34)	100.4(6)	O(41)-Mo(8)-O(12)	84.7(5)
O(15)-Mo(4)-O(34)	84.2(6)	O(1)-Mo(8)-O(36)	167.6(6)
O(35)-Mo(4)-O(34)	155.4(6)	O(30)-Mo(8)-O(36)	87.3(5)
O(23)-Mo(4)-O(13)	97.8(6)	O(11)-Mo(8)-O(36)	74.8(5)
O(15)-Mo(4)-O(13)	155.2(5)	O(41)-Mo(8)-O(36)	83.2(5)
O(35)-Mo(4)-O(13)	87.9(5)	O(12)-Mo(8)-O(36)	71.5(5)
O(34)-Mo(4)-O(13)	79.9(5)	O(8)-Mo(9)-O(33)	104.3(6)
O(23)-Mo(4)-O(37)	168.5(6)	O(8)-Mo(9)-O(25)	100.4(6)
O(15)-Mo(4)-O(37)	87.6(5)	O(33)-Mo(9)-O(25)	97.0(6)

U(29)-IVIO(7)-U(31)	95.5(6)	O(31)-Mo(7)-O(38)	71.2(5)
O(20) N(-(7) O(24))	20/10(0)		
O(18)-Mo(7)-O(17)	157.0(5)	O(17)-Mo(7)-O(38)	83.3(5)
O(42)-Mo(7)-O(17)	87.6(6)	O(18)-Mo(7)-O(38)	74.4(5)
O(29)-Mo(7)-O(17)	99.3(6)	O(42)-Mo(7)-O(38)	89.0(5)
O(42)-Mo(7)-O(18)	97.5(6)	O(29)-Mo(7)-O(38)	166.1(6)
O(29)-Mo(7)-O(18)	101.1(6)	O(17)-Mo(7)-O(31)	81.9(5)
O(29)-Mo(7)-O(42)	104.8(6)	O(18)-Mo(7)-O(31)	85.6(5)
O(40)-Mo(6)-O(38)	82.6(5)	O(21)-Mo(11)-O(22)	87.0(6)
O(19)-Mo(6)-O(38)	72.5(5)	O(27)-Mo(11)-O(22)	158.4(6)
O(22)-Mo(6)-O(38)	85.7(5)	O(6)-Mo(11)-O(22)	101.4(6)
O(31)-Mo(6)-O(38)	74.0(5)	O(27)-Mo(11)-O(21)	90.0(6)
O(4)-Mo(6)-O(38)	172.2(6)	O(6)-Mo(11)-O(21)	101.9(6)
O(19)-Mo(6)-O(40)	82.8(5)	O(6)-Mo(11)-O(27)	100.1(6)
O(22)-Mo(6)-O(40)	82.6(5)	O(28)-Mo(10)-O(37)	82.4(5)
O(31)-Mo(6)-O(40)	156.6(6)	O(16)-Mo(10)-O(37)	72.4(5)
O(4)-Mo(6)-O(40)	98.7(6)	O(41)-Mo(10)-O(37)	87.9(5)
O(22)-Mo(6)-O(19)	155.1(5)	O(13)-Mo(10)-O(37)	75.7(5)
O(31)-Mo(6)-O(19)	91.2(6)	O(3)-Mo(10)-O(37)	169.7(6)
O(4)-Mo(6)-O(19)	99.9(6)	O(16)-Mo(10)-O(28)	83.7(5)
O(31)-Mo(6)-O(22)	94.2(6)	O(41)-Mo(10)-O(28)	82.4(5)
O(4)-Mo(6)-O(22)	102.2(6)	O(13)-Mo(10)-O(28)	158.0(5)
O(4)-Mo(6)-O(31)	104.7(6)	O(3)-Mo(10)-O(28)	96.7(6)
O(35)-Mo(5)-O(37)	71.2(5)	O(41)-Mo(10)-O(16)	157.2(5)
O(21)-Mo(5)-O(37)	85.1(5)	O(13)-Mo(10)-O(16)	91.8(6)
O(16)-Mo(5)-O(37)	73.5(5)	O(3)-Mo(10)-O(16)	97.3(6)
O(40)-Mo(5)-O(37)	89.3(5)	O(13)-Mo(10)-O(41)	94.3(6)
O(5)-Mo(5)-O(37)	165.2(6)	O(3)-Mo(10)-O(41)	102.2(6)
O(21)-Mo(5)-O(35)	84.1(5)	O(3)-Mo(10)-O(13)	105.2(6)
O(16)-Mo(5)-O(35)	85.0(5)	O(15)-Mo(9)-O(39)	84.2(5)
O(40)-Mo(5)-O(35)	159.8(6)	O(27)-Mo(9)-O(39)	72.3(5)
O(5)-Mo(5)-O(35)	95.9(6)	O(25)-Mo(9)-O(39)	75.5(5)
O(16)-Mo(5)-O(21)	158.2(5)	O(33)-Mo(9)-O(39)	87.3(5)
O(40)-Mo(5)-O(21)	89.2(6)	O(8)-Mo(9)-O(39)	168.2(6)
O(5)-Mo(5)-O(21)	101.1(6)	O(27)-Mo(9)-O(15)	82.7(5)
O(40)-Mo(5)-O(16)	94.6(6)	O(25)-Mo(9)-O(15)	159.6(5)
O(5)-Mo(5)-O(16)	98.8(6)	O(33)-Mo(9)-O(15)	83.1(5)
O(5)-Mo(5)-O(40)	104.1(6)	O(8)-Mo(9)-O(15)	99.2(6)
O(13)-Mo(4)-O(37)	71.5(5)	O(25)-Mo(9)-O(27)	89.8(5)
O(34)-Mo(4)-O(37)	82.2(5)	O(33)-Mo(9)-O(27)	156.2(6)
O(35)-Mo(4)-O(37)	73.7(5)	O(8)-Mo(9)-O(27)	96.8(6)

Symmetry transformations used to generate equivalent atoms: #1 -x-1,-y,-z; #2 x+1,y,z; #3 x-1,y,z #4 x-1,y+1,z; #5 -x-1,-y+1,-z+1; #6 -x,-y+1,-z+1; #7 x+1,y,z+1; #8 x+1,y-1,z; #9 x-1,y,z-1.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2012