Unconventional vapor – liquid – solid mechanism of ultralong Ba₆Mn₂₄O₄₈ whiskers growth from chloride fluxes

E.A.Pomerantseva^a, E.A.Goodilin^{a,b,*}, Yu.D.Tretyakov^{a,b}

- ^a Department of Materials Science, Moscow State University, Lenin Hills, Moscow 119991, Russia
- b Department of Chemistry, Moscow State University, Lenin Hills, Moscow, 119991, Russia
- * Corresponding author. E-mail: goodilin@inorg.chem.msu.ru; Tel. +7 495 9394729.

Supporting information

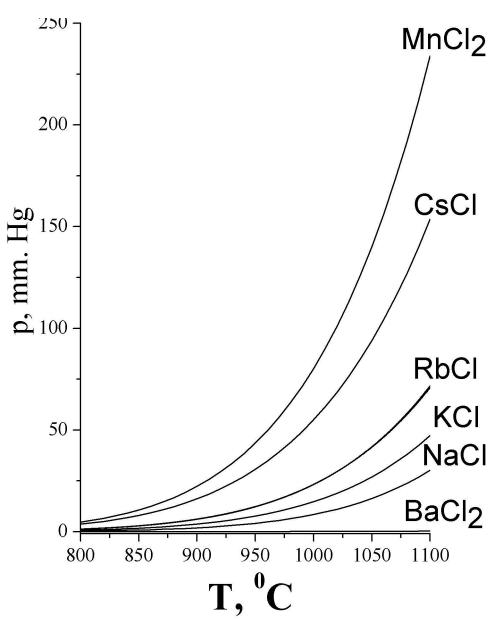


Fig.S1. Calculated data for equilibrium vapor pressure of different chlorides

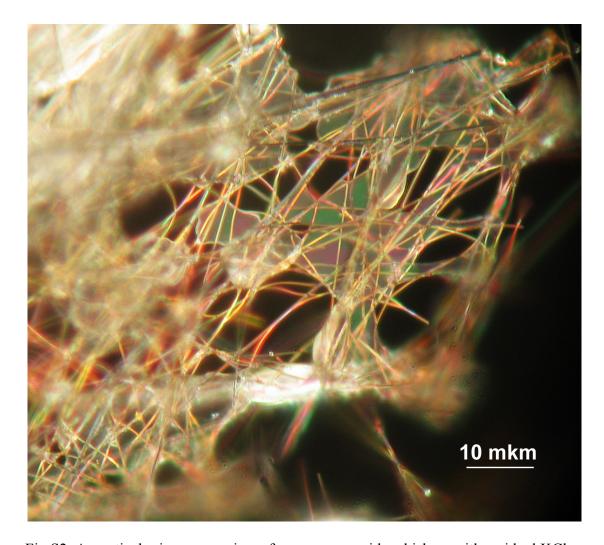


Fig.S2. An optical microscopy view of manganese oxide whiskers with residual KCl flux.

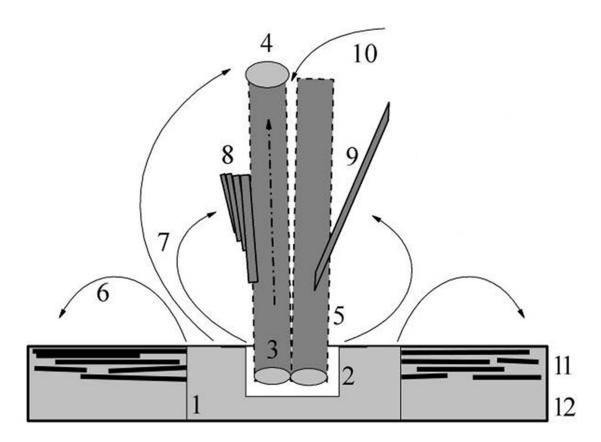


Fig.S3. A scheme of Ba₆Mn₂₄O₄₈ whiskers growth: 1 – reaction zone (BaMnO₃ pellet contacting with KCl); 2 – eutectic melt containing BaCl₂; 3 – a contact spot between a whisker growing up and a melt, several whiskers constituting pseudomonocrystal can form here; 4 – Ba-enriched melt on top of the growing whisker; 5 – a discontinuous film of BaCl₂ melt covering whisker surface and ensuring interaction with the gas phase components; 6 – enrichment of the gas phase with MnCl₂ and transportation of the chloride to the melt surface; 7 – MnCl₂ oxidation in air resulting in manganese oxides formation depositing on whiskers surface and interacting with BaCl₂ film; 8 – formation of side whiskers; 9 – growth of whiskers branches forming on creeping BaCl₂ droplets formed due to the BaCl₂ melt film rapture; 10 – preferable manganese oxide deposition between two growing whiskers, connecting them in one pseudo single crystal; 11 – oriented growth of the floating whiskers on the melt surface contacting with the air oxygen; 12 – inner area of the melt where whiskers growth is suppressed due to the lack of gas oxidizing agents.