Supporting information for the Communication "New symmetrically substituted 1,3,5triazines as host compounds for channel-type inclusion formation"

General procedure for the cyclotrimerization of aromatic nitriles:

The neat benzonitrile and zinc chloride, in a molar ratio as specified in Table 01, were filled into an ampoule under inert gas and sealed under vacuum. The ampoule was heated in a furnace for the given time and broken after cooling to room temperature. The zinc chloride was removed from the reaction mixture by mixing with water and treatment in an ultrasonic bath for 1 h . The aqueous solution was removed by suction and the product purified by soxhlet extraction and subsequent recrystallization from chloroform.

Selected data for triazines:
2,4,6-Tris(4-fluorophenyl)-1,3,5-triazine. (1) $\mathrm{Mp} 303{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=7.25(\mathrm{~m}) ; 8.76(\mathrm{~m}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(75 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \quad \delta=115.76, \quad 131.29, \quad 132.19$, $164.22 / 167.58,170.70(\mathrm{NCN})$. $\mathrm{EI}(+)-\mathrm{MS}: ~ m / z$: found 363 ; calc. 363.33. $v(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3086$, 3071, 1667, 1602, 1523, 1506, 1414, 1371, 1226, 1142, 859, 816, 581, 510.
2,4,6-Tris(4-chlorophenyl)-1,3,5-triazine. (2) Mp $343{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta=8.69\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.6 \mathrm{~Hz}\right) ; 7.55\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=129.03,130.32,134.40,139.16,170.97(\mathrm{NCN}) . \mathrm{EI}(+)-\mathrm{MS}: m / z$: found 412; calc. 412.68 . $v(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3072,1583,1520,1487,1405,1367,1350,1089,1013,804,512,479$.
2,4,6-Tris(4-bromophenyl)-1,3,5-triazine. (3) Mp $360^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.61\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.6 \mathrm{~Hz}\right) ; 7.71\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=127.84,130.49,132.03,134.81,171.13(\mathrm{NCN})$. EI-MS: m / z : found 546; calc. 546.03. $v(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3069,3039,1579,1514,1486,1401,1370,1355,1067,1010,805,495$.
2,4,6-Tris(4-iodophenyl)-1,3,5-triazine. (4) Mp $378{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.98$ $\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.5 \mathrm{~Hz}\right) ; 8.52\left(6 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=101.41$, $131.48,136.66,139.17,172.50(\mathrm{NCN})$. $\mathrm{EI}(+)-\mathrm{MS}: m / z$: found 688 ; calc. $687.03 . v(\mathrm{KBr}) / \mathrm{cm}^{-1}$: 3062, 3033, 1584, 1574, 1526, 1508, 1396, 1367, 1176, 1055, 1005, 803, 492.
2,4,6-Tris(4-bromo-3-fluorophenyl)-1,3,5-triazine. (5) Mp $278{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR} \quad(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.48(\mathrm{~m}) ; 8.34\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.3 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=121.01,123.26$, $127.39,127.90$, 133.26, 160.41/163.94, $170.20(\mathrm{NCN})$. $\mathrm{EI}(+)-\mathrm{MS}: m / z$: found 601; calc. $600.00 . v(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1618,1601,1578,1522,1358,1225,1215,1072,892,808,563$.
2,4,6-Tris(4-bromo-3,5-difluorophenyl)-1,3,5-triazine. (6) Mp $366{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, THF- d_{8}) $\delta=8.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HF}}=8.3 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376.5 \mathrm{MHz}\right.$, THF- $\left.\mathrm{d}_{8}\right) \delta=-106.89$ (m). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$) $\delta=104.45,113.53,138.68,160.13 / 163.35,171.38$ (NCN). MALDI-TOF-MS: m / z : found 655 ; calc. $653.97 . v(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1637,1526,1474,1379,1193$, 1032, 826, 730, 584.
2,4,6-Tris(4-bromo-2,3,5,6-tetrafluorophenyl)-1,3,5-triazine. (7) Mp $183{ }^{\circ} \mathrm{C} . \quad{ }^{19} \mathrm{~F}$-NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-131.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{FF}}=10.43 \mathrm{~Hz}, \mathrm{~F} 3\right.$); -139.58 (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{FF}}=12.12 \mathrm{~Hz}, \mathrm{~F} 2\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=104.41\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=22.3 \mathrm{~Hz}\right) ; 115.37\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=13.6 \mathrm{~Hz}\right)$; $143.66 / 147.15\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=-167.4 \mathrm{~Hz}\right) ; 167.4\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=-3.11 \mathrm{~Hz}, \mathrm{NCN}\right)$. GC-MS: m/z: 762.1 $[\mathrm{M}]^{+}, 683[\mathrm{M}-\mathrm{Br}]^{+}, 254\left[\mathrm{BrC}_{6} \mathrm{~F}_{4} \mathrm{CN}\right]^{+} . v(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1641,1527,1497,1411,1355,1154,988$, 838, 708.

2,4,6-Tris(4'-bromobiphenylyl)-1,3,5-triazine. (8) Mp decomp. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right) ; 7.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.6 \mathrm{~Hz}\right) ; 7.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.5 \mathrm{~Hz}\right) ; 8.83(\mathrm{~d}$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.3 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=122.42 ; 127.12 ; 128.83 ; 129.60 ; 132.09$; 135.51; 139.26; 143.97 ; 171.31 (NCN). MALDI-TOF-MS: m / z : found 775.5; calc. 774.3. $v(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3064,1607,1581,1560,1512,1481,1416,1371,1074,1002,804,657$.
2,4,6-Tris(4'-bromo- $2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$-tetrafluorobiphenylyl)-1,3,5-triazine. (9) $\mathrm{Mp} 358{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right) \delta=7.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right) ; 9.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}-\mathrm{NMR}$ $\left(376.5 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right) \delta=-137.10(\mathrm{~m}),-144.84(\mathrm{~m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right) \delta=100.37$, $120.99,130.41,131.71,132.59,138.26,147.20 / 143.69\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=-264.8 \mathrm{~Hz}\right), 148.39 / 145.12$ $\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=-245.3 \mathrm{~Hz}\right), 172.66(\mathrm{NCN})$. MALDI-TOF-MS: m / z : found 991.6; calc. 990.2. $v(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3247,1576,1522,1480,1406,1374,1192,1160,1020,974,817,798,519$.
2,4,6-Tris($2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$-pentafluorobiphenylyl)-1,3,5-triazine. (10) Mp decomposition. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right) \delta=7.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.5 \mathrm{~Hz}\right) ; 8.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right) .{ }^{19}$ F-NMR $\left(376.5 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right) \delta=-144.30(\mathrm{~m}),-157.75\left(7,{ }^{3} \mathrm{~J}_{\mathrm{FF}}=19.9 \mathrm{~Hz}\right),-164.53(\mathrm{~m}) . \mathrm{EI}(+)-\mathrm{MS}:$ m / z : found 809 ; calc. 807.5. $\mathrm{v}(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3179,1657,1613,1531,1489,1411,1283,1065$, 988, 861, 761.

Crystal-Structure Determination:

A crystal of $\mathbf{8} \cdot(\text { toluene })_{0.69}$ was mounted with Paratone $-\mathrm{N}^{1}$ in a MiTeGen loop and used for X-ray structure determination at 90 K . All measurements were made on a Bruker APEX II area-detector diffractometer ${ }^{2}$ using graphite monochromated $\operatorname{Mo} K_{\alpha}$ radiation ($\lambda=0.71073 \AA$). The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of 8056 reflections in the range $2.30^{\circ}<\theta<$ 28.00°. A total of 1429 frames were collected using ω and φ scans, 240 seconds exposure time and a rotation angle of 0.5° per frame, and a crystal-detector distance of 59.5 mm .
Crystal data for $8 \cdot(\text { toluene })_{0.69}$

Empirical formula	$\mathrm{C}_{43.80} \mathrm{H}_{29.49} \mathrm{Br}_{3} \mathrm{~N}_{3}$	
Formula weight	837.54	
Temperature	$90(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	$I 2 / \mathrm{a}$	
Unit cell dimensions	$\mathrm{a}=39.8459(11) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=3.84340(10) \AA$	$\beta=104.3980(10)^{\circ}$
	$\mathrm{c}=46.6728(18) \AA$	$\gamma=90^{\circ}$

Volume 6923.2(4) \AA^{3}

Z 8
Density (calculated) $\quad 1.607 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient $\quad 3.534 \mathrm{~mm}^{-1}$
F(000)
3346
Crystal size $\quad 0.31 \times 0.12 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection $\quad 1.55$ to 28.57°.
Index ranges $\quad-53 \leq \mathrm{h} \leq 51,-5 \leq \mathrm{k} \leq 4,-62 \leq 1 \leq 58$
Reflections collected 31239

Independent reflections $8626[\mathrm{R}($ int $)=0.0407]$
Completeness to theta $=27.00^{\circ} \quad 99.7 \%$
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9281 and 0.7137
Refinement method Full-matrix least-squares on F^{2}
Data / restraints / parameters 8626 / 57 / 474
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.028$
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R} 1=0.0581, \mathrm{wR} 2=0.1421$
R indices (all data) $\quad \mathrm{R} 1=0.0881, \mathrm{wR} 2=0.1567$
Largest diff. peak and hole 1.130 and -2.058 e. \AA^{-3}

A crystal of $\mathbf{8} \cdot(p \text {-xylene })_{0.72}$ was mounted with Paratone-N on a glass needle and used for X-ray structure determination at $-100^{\circ} \mathrm{C}$. All measurements were made on a Oxford Diffraction SuperNova area-detector diffractometer ${ }^{3}$ using mirror optics monochromated $\operatorname{Mo} K_{\alpha}$ radiation $(\lambda=0.71073 \AA)$. The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of 23023 reflections in the range $1.50^{\circ}<\theta<28.17^{\circ}$. A total of 2236 frames were collected using ω scans, 80 seconds exposure time and a rotation angle of 0.5° per frame, and a crystal-detector distance of 65.0 mm .
Crystal data for $8 \cdot(\text { p-xylene })_{0.72}$
Empirical formula $\quad \mathrm{C}_{44.77} \mathrm{H}_{31.21} \mathrm{Br}_{3} \mathrm{~N}_{3}$
Formula weight 850.85
Temperature
173(2) K
Wavelength
Crystal system
$0.71073 \AA$
Space group
Unit cell dimensions
Monoclinic
I2/a
$\mathrm{a}=39.9115(7) \AA \quad \alpha=90^{\circ}$
$\mathrm{b}=3.86753(7) \AA \quad \beta=103.6149(15)^{\circ}$
$\mathrm{c}=46.7250(7) \AA \quad \gamma=90^{\circ}$
Volume
7009.7(2) \AA^{3}

Z
8
Density (calculated)
$1.612 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient $\quad 3.491 \mathrm{~mm}^{-1}$
F(000)
3406.3

Crystal size
$0.46 \times 0.23 \times 0.07 \mathrm{~mm}^{3}$
Theta range for data collection 1.53 to 28.23°.
Index ranges
$-50 \leq h \leq 50,-5 \leq \mathrm{k} \leq 4,-60 \leq 1 \leq 60$
Reflections collected 54702
Independent reflections $7995[\mathrm{R}(\mathrm{int})=0.0320]$
Completeness to theta $=26.00^{\circ} \quad 100.0 \%$
Refinement method Full-matrix least-squares on F^{2}
Data / restraints / parameters 7995 / 12 / 454
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.042$
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R} 1=0.0809, \mathrm{wR} 2=0.2554$

R indices (all data)
$\mathrm{R} 1=0.0890, \mathrm{wR} 2=0.2643$
Largest diff. peak and hole 1.258 and $-2.125 \mathrm{e} . \AA^{-3}$

A crystal of $\mathbf{8} \cdot(\text { mesitylene })_{2.0}$ was mounted with Paratone in a MiTeGen loop and used for X-ray structure determination at $-50^{\circ} \mathrm{C}$. All measurements were made on a Oxford Diffraction SuperNova area-detector diffractometer ${ }^{3}$ using mirror optics monochromated Mo K_{α} radiation $(\lambda=0.71073 \AA$). The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of 17273 reflections in the range $1.51^{\circ}<\theta<28.25^{\circ}$. A total of 5958 frames were collected using ω scans, 80 seconds exposure time and a rotation angle of 0.5° per frame, and a crystal-detector distance of 65.0 mm .
Crystal data for $8 \cdot(\text { mesitylene })_{2.0}$
Empirical formula $\quad \mathrm{C}_{57} \mathrm{H}_{48} \mathrm{Br}_{3} \mathrm{~N}_{3}$
Formula weight
1014.71

Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
223(2) K
0.71073 A

Triclinic
$P \overline{1}$
$\mathrm{a}=3.86154(9) \AA \quad \alpha=67.429(3)^{\circ}$
$\mathrm{b}=22.1115(7) \AA \quad \beta=88.114(2)^{\circ}$
$\mathrm{c}=27.1691(7) \AA \quad \gamma=87.127(2)^{\circ}$
Volume $\quad 2139.20(10) \AA^{3}$
Z
2
Density (calculated) $\quad 1.575 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient $\quad 2.874 \mathrm{~mm}^{-1}$
$\mathrm{F}(000) \quad 1032$
Crystal size $\quad 0.446 \times 0.1475 \times 0.0172 \mathrm{~mm}^{3}$
Theta range for data collection 1.51 to 28.31°.
Index ranges $\quad-4 \leq h \leq 5,-27 \leq \mathrm{k} \leq 28,-35 \leq 1 \leq 35$
Reflections collected 99271
Independent reflections $\quad 9845[\mathrm{R}(\mathrm{int})=0.0955]$
Completeness to theta $=26^{\circ} 99.9 \%$
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 1 and 0.52964
Refinement method Full-matrix least-squares on F^{2}
Data / restraints / parameters 9845 / 0 / 406
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.118$
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R} 1=0.1229, \mathrm{wR} 2=0.3324$
R indices (all data) $\quad \mathrm{R} 1=0.1685, \mathrm{wR} 2=0.3607$
Largest diff. peak and hole 1.012 and -1.385 e. \AA^{-3}

[^0]
[^0]: ${ }^{1}$ Hampton Research, Catalog Number HR2-643; H. Hope, Acta Cryst, 1988, B44, 22.
 ${ }^{2}$ Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
 ${ }^{3}$ Oxford Diffraction (2010). CrysAlisPro (Version 1.171.34.36). Oxford Diffraction Ltd., Yarnton, Oxfordshire, UK.

