Supplementary Information

Syntheses of Au–Cu-rich AuAg(AgCl)Cu alloy and Ag–Cu-rich AuAgCu@Cu core–shell and AuAgCu alloy nanoparticles using polyol method

Masaharu Tsuji,^{*a,b} Mika Matsunaga,^a Toshitaka Ishizaki^c and Takamasa Nonaka^c

^a Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580,

- ^b Department of Applied Science for Electronics and Materials, Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580, Japan
- ^c Toyota Central R & D Labs., Inc., Nagakute, Aichi, 480-1192, Japan

*To whom correspondence should be addressed: E-mail: tsuji@cm.kyushu-u.ac.jp

Fig. S1. Temperature profiles in each experiment.

Fig. S2. Line analysis data of Au, Ag, Cu, and Cl components along a line shown in Fig. 2c.

Fig. S3. Precipitate deposited on the bottom of flask.

Fig. S4. Line analysis data along a blue line in Fig. 2f.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2012

Fig. S5. XPS spectra of Cl 2p component of AuAg(AgCl)Cu particles prepared from $HAuCl_4 \cdot H_2O/AgNO_3/Cu(OAc)_2 \cdot H_2O/PVP$ mixtures in EG at a Au : Ag : Cu molar ratio of 1 : 2 : 1. (a) before and (b) after saturated NaCl treatment for AgCl removal.

Fig. S6. Ag K-edge XANES spectra of AuAg(AgCl)Cu particles prepared from $HAuCl_4 \cdot H_2O/AgNO_3/Cu(OAc)_2 \cdot H_2O/PVP$ mixtures in EG at a Au : Ag : Cu molar ratios of 1 : 2 : 1 before and after saturated NaCl treatment and 0.0065 : 2 : 1. For comparison XANES spectra of AgCl and Ag are shown.

Fig. S7. Line analysis data of Au, Ag, and Cu components along blue lines shown in Fig. 5b and Fig. 5c.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2012

(a) TEM

(b) AuAgCu component

_____ 200 nm

(c) Au component

Au M

(d) Ag component

(e) Cu component

(f) Cl component

⊐ 200 nm

200 nm

Fig. S8. TEM and TEM-EDS data of Au, Ag, Cu, and Cl components of AuAg(AgCl)Cu alloy particles.

Fig. S9. Line analysis data along a blue line in Fig. S8c.