Supporting Information for:

Multiform La₂O₃: Yb³⁺/Er³⁺/Tm³⁺ Submicro-/Microcrystals Derived from Hydrothermal Process: Morphology Control and Tunable Upconversion Luminescence Properties

Guogang Li, Mengmeng Shang, Dongling Geng, Dongmei Yang, Chong Peng, Ziyong Cheng, and Jun Lin*

State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China), and Graduate School of the Chinese Academy of Sciences, Beijing 100049 (P. R. China).

* Address correspondence to jlin@ciac.jl.cn

Figure S1. XRD patterns of the as-prepared LaCO₃OH products ($V_{EG/H_2O} = 1:3$, $C_{CO(NH_2)_2} = 6.25 \text{ mol}\cdot\text{L}^{-1}$) at 180 °C for 24 h with different pH values of (a) 2, P4; (b) 10, P5; (c) 11, P6; (d) 12, P7 and the standard data of LaCO₃OH (JCPDS card no. 26-0815).

Figure S2. XRD patterns of the as-prepared LaCO₃OH products (pH = 10, $C_{CO(NH_2)_2}$ = 6.25 mol·L⁻¹) at 180 °C for 24 h with different V_{EG/H_2O} : (a) 1:7, P11; (b) 3:5, P12; (c) 1:1, P13; (d) 3:1, P14; (e) 7:1, P15 and the standard data of LaCO₃OH (JCPDS card no. 26-0815).

Figure S3. XRD patterns of the as-prepared LaCO₃OH products (pH = 10, V_{EG/H_2O} = 1:3) at 180 °C for 24 h with different $C_{CO(NH_2)_2}$: (a) 2.5, P16; (b) 3.75, P17; (c) 6.25, P18 mol·L⁻¹ and the standard data of LaCO₃OH (JCPDS card no. 26-0815).

Figure S4. The influence of the dosages of CO(NH₂)₂ ($C_{CO(NH_2)_2}$) on the shapes of LaCO₃OH products when fixing pH = 10, V_{EG/H_2O} = 1:3. (A, B) 2.5 mol·L⁻¹; (C, D) 3.75 mol·L⁻¹ and (E, F) 6.25 mol·L⁻¹.

Figure S5. Typical SEM images of the representative P1 obtained at 180 °C at early stages with the reaction durations: (A) 10 min, (B) 30 min, (C) 1 h and (E) 4 h.

Figure S6. Typical TEM images of (A1) P2, (B1) P6, (C1) P8 and (D1) P13, respectively. (A2-D2) are their corresponding HRTEM images.

Figure S7. (A) XRD patterns of the as-prepared LaCO₃OH:1% Er^{3+} and LaCO₃OH:5% Yb³⁺, 1% Er^{3+} products (pH = 10, V_{EG/H_2O} = 1:3, $C_{CO(NH_2)_2}$ = 6.25 mol·L⁻¹, the same experimental conditions to P18). (B) and (C) are the SEM images of LaCO₃OH:1% Er^{3+} and LaCO₃OH:5% Yb³⁺, 1% Er^{3+} , respectively.

Figure S8. Energy level diagrams of the Yb^{3+} , Er^{3+} , and Tm^{3+} ions and the proposed UC emission mechanism.

Seen from **Figure S7**, the energy transfer occurs from the Yb³⁺ ion to Er³⁺ or Tm³⁺ ions. The blue-light emission of Tm³⁺ of ¹G₄ energy level is accomplished by the three-step sequential ET from the excited Yb³⁺ to Tm³⁺. First, absorption of pump photons populates the long-lived ²F_{5/2} level in Yb³⁺. Non-resonant ET from Yb³⁺ to Tm³⁺ causes excitation to the ³H₅ level in Tm³⁺. This population relaxes rapidly to the ³F₄ level by nonradiative multiphonon decay. A second nonresonant ET from Yb³⁺ to Tm³⁺ populates the ³F₂ and ³F₃ levels, and subsequently multiphonon decay occurs leading to population of ³H₄ level. A third ET finally populates the ¹G₄ level, then generates the emissions at 476 nm (¹G₄→³H₆) (most strong), 653 nm (¹G₄→³F₄) and 693 nm (³F₃→³H₆). In the Yb³⁺ and Er³⁺ codoped system, the green and red light emissions are predominantly due to the two-step ET from the excited Yb³⁺ to Er³⁺ and a little contribution from Er³⁺ ground/excited-state absorption (GSA/ESA). First, Yb³⁺ ions are excited from ²F_{7/2} to ²F_{5/2} level by 980 nm laser, and then the energy is transferred to Er³⁺ to populate ⁴I_{11/2} level. During the population of the ⁴I_{11/2} level, a

second 980 nm photon transferred by the excited Yb^{3+} ions can populate a higher ${}^{4}F_{7/2}$ energetic state from ${}^{4}I_{11/2}$ of the Er^{3+} ions via energy transfer and excited-state absorption. The Er³⁺ ion can then relax nonradiatively by a fast multiphoton decay process to the ${}^{2}H_{11/2}$ and ${}^{4}S_{3/2}$ levels, and the dominant green $({}^{2}H_{11/2} + {}^{4}S_{3/2}) \rightarrow {}^{4}I_{15/2}$ emissions (545, 557 nm) occur. On the other hand, the electron can further relax to the ${}^{4}F_{9/2}$ level, which relaxes radiatively to the ground-state ${}^{4}I_{15/2}$ level to generate red emissions (662, 671 nm). The Er³⁺ ion can also absorb 980 nm photons to populate ${}^{4}I_{11/2}$ level and then nonradiatively relax to ${}^{4}I_{13/2}$ level. The populated ${}^{4}I_{13/2}$ level might be excited to the ${}^{4}F_{9/2}$ red-emitting level in Er³⁺ ions by cross-relaxation process ${}^{4}I_{13/2}$ + ${}^{4}I_{11/2} \rightarrow {}^{4}F_{9/2}$ + ${}^{4}I_{15/2}$. In addition, the higher efficiency of the cross relaxation in Er^{3+} ions, that is, ${}^{4}F_{7/2} + {}^{4}I_{11/2} \rightarrow {}^{4}F_{9/2} + {}^{4}F_{9/2}$, which also can directly populate the ${}^{4}F_{9/2}$ red-emitting level. The energy transfer from Er^{3+} to Er^{3+} occurs with the enhancement of Er^{3+} content, so the electron is transferred again from ${}^4I_{13/2}$ to ${}^4F_{9/2}$ levels after adsorbing a photon from adjacent Er³⁺ ion. Subsequently, the electron radiatively relaxes to the ground state $({}^{4}I_{15/2})$ from ${}^{4}F_{9/2}$ level and give the red emission. This process depopulates the ${}^{2}H_{11/2}/{}^{4}S_{3/2}$ levels and thus decreases the green emission.

Figure S9. The UC emission spectra of La_2O_3 :1% Er^{3+} and $NaYF_4$:1% Er^{3+} under the 980 nm LD excitation.