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1 Solubility of the ten APIs and two coformers 

Table S1. Solubility measurements.  
Compound Solublea Partially solubleb Practically insolublec 

4-Aminobenzoic acid Acetone 
Acetonitrile 

Ethanol 
Ethyl acetate 

Methanol 

Diethyl ether 
1,4-Dioxane 

Nitromethane 
Water 

 

Succinic acid Ethanol 
Ethyl acetate 

Methanol 

Acetone 
Acetonitrile 
Diethyl ether 

1,4-Dioxane, Water 

Nitromethane 

Metyrapone Acetone 
1,4-Dioxane 
Acetonitrile 

Diethyl ether 
Ethanol 

Ethyl acetate 
Methanol 

Nitromethane 
Water 

β-Methyl-β-Nitrostyrene Acetone 
Ethanol 

Ethyl Acetate 
Methanol 

Acetonitrile 
Diethyl ether 
1,4-Dioxane 

Nitromethane 

Water 

Bifonazole Acetone 
1,4-Dioxane 

Methanol 

Acetonitrile 
Diethyl ether 

Ethanol 
Ethyl acetate 

Nitromethane 
Water 

1,4-Dicyanobenzene Acetone 
Acetonitrile 
Methanol 

1,4-Dioxane 
Ethanol 

Diethyl ether 
Ethyl acetate 
Nitromethane 

Water 
1-(5-Nitro-2-

Pyridyl)Benzotriazole 
 Acetone 

Ethyl acetate 
Nitromethane 

Water 

Acetonitrile 
Diethyl ether 
1,4-Dioxane 

Ethanol 
Methanol 

1-(2-Pyridyl)Benzotriazole Acetone 
Ethyl Acetate 

Acetonitrile 
Diethyl ether 

Ethanol 
Methanol 

1,4-Dioxane 
Nitromethane 

Water 

Phenazine Acetone 
Diethyl ether 
1,4-Dioxane 

Acetonitrile 
Ethanol 

Ethyl acetate 
Methanol 

Nitromethane, Water 

 

Diphenylcyclopropenone Acetone 
Acetonitrile 
1,4-Dioxane 

Ethanol 
Ethyl acetate 

Methanol 

Diethyl ether 
Nitromethane 

Water 

 

Antipyrine Acetone 
Diethyl ether 
1,4-Dioxane 

Ethanol 
Ethyl acetate 

Methanol 

Nitromethane 
Water 

Acetonitrile 

 

2,2-Bipyridine Acetone 
Acetonitrile 

Ethanol 
Ethyl acetate 

Methanol 

Diethyl ether 
1,4-Dioxane 

Nitromethane 
Water 

 

30 mg of the compound were placed in 10 mL of each of the nine solvent at room temperature and by 
visual evaluation the solvents were classified as asoluble: compound fully dissolved, bpartially soluble: 
some or most of the compound dissolved and cpractically insoluble: little or none of the compound 
dissolved. 
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2 Infrared spectroscopy of the novel cocrystals 

 

Figure S1. The IR spectra of 2,2´-bipyridine (blue), the cocrystal (I) produced by grinding (black), 
and β-succinic acid (red). 
 

 

Figure S2. The IR spectra of diphenylcyclopropenone (blue), the cocrystal (II) produced by grinding 
(black), and β-succinic acid (red). 
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Figure S3. The IR spectra of antipyrine (blue), the cocrystal (III) produced by crystallization from 
amorphous III at 50 °C (black), and 4-aminobenzoic acid (red). 
 

 

FigureS4. The IR spectra of phenazine (blue), the cocrystal (IV) produced by sublimation (black), 
and 4-aminobenzoic acid (red). 

1654.4
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3 Summary of experimental screening results 

Table S2. Overview of experimental screening results. The cocrystals with published single crystal 
structures which had been grown from solvents are indicated in bold and the CSD code given. 

 
Cocrystallizing 

agent 

 
Biological building block 

Stage I 
Indication of cocrystallization: 

Stage II 
 

Neat 
grinding 

Solvent 
assisted 
grinding 

HSM Single crystals of: 

Succinic acid 

Metyrapone   -  

-Methyl--Nitrostyrene   - -Methyl--
Nitrostyrene 

Bifonazole    Bifonazole 

1,4-Dicyanobenzene    1,4-
Dicyanobenzene 

1-(5-Nitro-2-
Pyridyl)Benzotriazole 

    

1-(2-Pyridyl)Benzotriazole     

Phenazine    WOQBOT 

Diphenylcyclopropenone    
Succinic acid • 

diphenylcycloprop-
enone (II) 

Antipyrine     

2,2´-Bipyridine    
Succinic acid • 

2,2´-bipyridine (I) 

4-Aminobenzoic 
acid 

Metyrapone   -  

-Methyl--Nitrostyrene   -  

Bifonazole    Bifonazole 

1,4-Dicyanobenzene    
1,4-

Dicyanobenzene 

1-(5-Nitro-2-
Pyridyl)Benzotriazole 

    

1-(2-Pyridyl)Benzotriazole     

Phenazine    
4-Aminobenzoic 
acid • phenazine 

(IV) 

Diphenylcyclopropenone     

Antipyrine    
4-Aminobenzoic 
acid • antipyrine 

(III) 

 2,2´-Bipyridine   - DAQYUQ 

: cocrystal formation, : no cocrystal formation observed, -: not attempted, as large melting point 
difference. 
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4 Single crystal X-ray diffraction 

4.1 Succinic acid•2,2-bipyridine (I) 

 

Figure S5. Thermal ellipsoid plots of succinic acid2,2'-bipyridine (I). Displacement ellipsoids are 
drawn at the 50% probability level. Atoms generated by inversion labelled with i and ii.  

 

Table S3. Geometrical parameters for intermolecular interactions in I. 
 

D—H···A D—H (Å) H···A (Å) D···A (Å) D—H···A (°) 
O2—H1···N1i 0.91(2) 1.87(2) 2.7774(14) 177(2) 

Symmetry code:  (i) x, y−1, z. 

 

4.2 Succinic acid•diphencyclopropenone (II) 

 

Figure S6. Thermal ellipsoid plots of succinic acid  diphenylcyclopropenone (II). Displacement 
ellipsoids are drawn at the 50% probability level. Atoms generated by inversion labelled with i. 

  

Electronic Supplementary Material (ESI) for CrystEngComm
This journal is © The Royal Society of Chemistry 2012



7 
 

Table S4. Geometrical parameters for intermolecular interactions in II. 
 

D—H···A D—H (Å) H···A (Å) D···A (Å) D—H···A (°) 
O2—H11···O1i 0.96 (3) 1.68 (3) 2.6351 (15) 170 (2) 

Symmetry code:  (i) x, −y+3/2, z+1/2. 

 

4.3 4-Aminobenzoic acid•antipyrine (III) 

 

Figure S7. Asymmetric unit of 4-aminobenzoic acidantipyrine (III). Displacement ellipsoids are 
drawn at the 50 % probability level.  

 

Table S5. Geometrical parameters for intermolecular interactions in III. 

D—H···A D—H (Å) H···A (Å) D···A (Å) D—H···A (°) 
N1—H4···O5 0.81 (4) 2.14 (4) 2.946 (4) 170 (3) 
N1—H5···O3i 0.92 (4) 2.18 (4) 3.065 (4) 163 (3) 

N2—H11···O2ii 0.85 (3) 2.08 (3) 2.923 (4) 171 (3) 
N2—H12···O6iii 0.89 (3) 2.09 (4) 2.971 (4) 173 (3) 
O1—H1···O6iv 0.852(10) 1.752(12) 2.598 (3) 172 (4) 
O4—H8···O5 0.84(3) 1.78(4) 2.597 (3) 164 (4) 

Symmetry codes:  (i) −x+1, y−1/2, −z+2; (ii) −x+2, y+1/2, −z+1; (iii) x+1, y, z; (iv) x+1, y−1, z. 
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4.4 4-Aminobenzoic acid•phenazine (IV) 

 

Figure S8. Asymmetric unit of 4-aminobenzoic acidPhenazine (IV). Displacement ellipsoids are 
drawn at the 50 % probability level. Hydrogen bonds are omitted for clarity. 

 

Table S6. Geometrical parameters for intermolecular interactions in IV. 

D—H···A D—H (Å) H···A (Å) D···A (Å) D—H···A (°) 
N1—H1B···O11i 0.94 (2) 1.98 (2) 2.894 (2) 165 (2) 

N1—H1A···N165ii 0.85 (2) 2.18 (2) 3.034 (2) 176 (2) 
N11—H11A···O1iii 0.89 (2) 2.04 (2) 2.919 (2) 170 (2) 

N11—H11B···N245iv 0.90 (2) 2.16 (2) 3.055 (2) 173 (2) 
N21—H21A···O31iii 0.90 (2) 2.00 (2) 2.8827 (19) 167.4 (19) 
N21—H21B···N110v 0.93 (2) 2.15 (2) 3.057 (2) 166 (2) 
N31—H31A···N185iii 0.86 (3) 2.17 (3) 3.025 (2) 173 (2) 
N31—H31B···O21vi 0.92 (2) 2.00 (2) 2.902 (2) 165 (2) 
O2—H2A···N225vii 0.96 (3) 1.76 (3) 2.6873 (18) 161 (2) 

O12—H12A···N150viii 0.99 (3) 1.75 (3) 2.7112 (19) 161 (3) 
O22—H22A···N205vi 1.02 (3) 1.71 (3) 2.7061 (19) 163 (3) 
O32—H32A···N125ix 0.97 (3) 1.76 (3) 2.7036 (18) 163 (3) 

Symmetry codes:  (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z; (v) x, 
y−1, z+1; (vi) −x, −y+1, −z+1; (vii) x, y−1, z; (viii) −x+2, −y+1, −z+2; (ix) x, y+1, z−1. 
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The overwhelming majority of the succinic acid molecules in the crystalline environment, 

50/62 are approximately planar in Conf A, close to the local energy minima (Figure S11a and 

Table S15).  The majority of cases where the succinic conformation is not Conf A, appears to 

correlate with the other molecules in the crystal structure having a complex structure with 

multiple hydrogen bond donor/acceptor groups located so that there are severe steric 

restrictions on forming hydrogen bonds with a planar (Conf A) succinic acid molecule. The 

molecules in WOJHEI and JAZBES adopt the high energy planar conformation with the 

carboxylic acid groups rotated (Conf B) in order to form the hydrogen bonds. The succinic 

acid is non-planar in Conf C, approximating the most stable gas phase structure, in 

JEDLAG01, QEVMEJ and SERMOR10, and in Conf. E, the related local energy minimum, 

in CIRXAD, JEKDUY, KIJSEC, KTHSUC, OLOFUQ and one molecule of PEKQOM. The 

only structure not close to a freely optimised conformation is the second molecule in 

PEKQOM, which approximates Conf D (Figure S11b) enabling it to form hydrogen bonds 

with 4 partner molecules. 

 

Table S7. Freely optimized conformations of succinic acid and their frequency of occurrence in 
experimental crystal structures.  

Conformation MP2a 

(kJ/mol) 
HFb 

(kJ/mol) 
3 2 4 1 5 

Crystal 
structuresc 

Conf C - - -66.01 170.30 170.21 179.54 179.55 3 

Conf E 5.60 8.10 -59.28 -178.64 -31.23 179.47 179.66 6 

Conf A 6.37 1.86 177.29 177.13 177.06 179.56 179.56 50 

Intramolecular 
H-bond 

15.77 20.06 -79.59 -168.66 69.02 -178.93 -1.47 0 

Conf B 17.82 21.10 178.94 1.94 56.37 179.97 -179.92 2 

aThe energies, relative to Conf C, of these structures, freely optimised at the MP2 6-31G(d,p) level of 
therory. bThe relative SCF component of this energy. cThe number of succinic acid molecules in 
crystal structures which approximate this conformation. Only one molecule is too far from any of 
these structures to be included (see Conf D region on Fig. S11(b) for this structure and Figs. 11 spread 
of structures in each conformational class). 
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 (a) planar carbon chain 

 
(b) non-planar carbon chain 

 
Figure S11. MP2/6-31G(d,p) relaxed intramolecular energy (kJ mol–1) scans for succinic acid as a 
function of rotation about the two carboxylic acid groups, for (a)  the planar conformation with the 
carbon chain torsion (θ3=C1-C2-C3-C4) constrained to 180° and (b) with θ3=C1-C2-C3-C4 constrained to 
–66.1°. In both scans the carboxylic acid groups were constrained to the planar geometry. The 
molecular symmetry of the isolated molecule is represented by shading the symmetry equivalent 
areas. The conformations observed in crystal structures are shown by full diamonds for the 
conformation observed in the CSD as generated by the program Vista, with open diamonds denoting 
the symmetry equivalent conformations. 
 

 

5.2 Details of the lattice energy landscapes 

The following lattice energy landscapes show two levels of accuracy in evaluating the 

relative lattice energies and refining the crystal structures. The lattice energy landscape for 
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each search shows all the low energy crystal structures found by treating the molecule 

structures as rigid in the MP2/6-31G(d,p) optimised isolated molecule conformation. In this 

approximation, the lattice energy is just the intermolecular lattice energy, Uinter, calculated 

with a distributed multipole electrostatic model and the FIT repulsion-dispersion potential.  

The lower energy structures were further refined by allowing specified torsion angles (see 

m/s Table 1) to respond to the packing forces, by optimising Elatt=Uinter+Eintra, where  Eintra, 

is the MP2/6-31G(d,p) energy penalty for the change in conformation. The resulting minima 

are also shown, joined to the starting rigid-body structure, indicating the lowering in lattice 

energy that results from considering this conformational flexibility. All the experimental 

crystal structures are compared with the nearest structure found in the search after optimising 

Elatt=Uinter+Eintra in Table S8. 

 

5.2.1 Succinic acid 

The succinic acid crystal energy landscape is divided into the Z=1 search (Figure S12a), 

for comparability with the other searches and a Z=2 search (Figure S12b) to test whether the 

methodology could find the metastable  polymorph. The stable  form is the global 

minimum on the lattice energy landscape, but there are several alternative packings of the 

)8(2
2R carboxylic acid chain motif that are more stable than the observed metastable 

polymorph.  This may reflect the poorer reproduction of the structure of the α polymorph 

(Table S16).  Non-planar conformations gave rise to crystal structures that were so much less 

dense than those generated with the planar conformation that they required a separate plot 

(Figure S13a) and seem unlikely to be feasible polymorphs.   
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Figure S19. Overlay of the experimental (coloured by element) and the corresponding structures 
found in the search (green). Mo – monoclinic; tr – triclinic. 
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