Electronic Supplementary Information

Homoleptic polynuclear Cu^{I} and Ag^{I} complexes of *N*-thiophosphorylated thioureas *o*-RO(O)CC₆H₄NHC(S)NHP(S)(O*i*Pr)₂ (R = Me, Et)

Damir A. Safin,*^a Maria G. Babashkina,^a Michael Bolte^b and Yann Garcia^a

^a Institute of Condensed Matter and Nanosciences, MOST - Inorganic Chemistry, Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium. Fax: +32(0) 1047 2330; Tel: +32(0) 1047 2831; E-mail: damir.safin@ksu.ru

^b Institut für Anorganische Chemie J.-W.-Goethe-Universität, Frankfurt/Main, Germany.

Physical measurements

Infrared spectra (Nujol) were recorded with a Thermo Nicolet 380 FT-IR spectrometer in the range 400–3600 cm⁻¹. NMR spectra in CDCl₃ were obtained on a Bruker Avance 300 MHz spectrometer at 25 °C. ¹H and ³¹P{¹H} NMR spectra were recorded at 299.948 and 121.420 MHz, respectively. Chemical shifts are reported with reference to SiMe₄ (¹H) and 85% H₃PO₄ (³¹P{¹H}). Electronic spectra of absorption in 10⁻⁴ M solution were measured on a Lambda-35 spectrometer in the range 200–1000 nm. Elemental analyses were performed on a Thermoquest Flash EA 1112 Analyzer from CE Instruments.

Synthesis of $[Cu_3L^{I,II}_3]$, $[Ag_4L^{I}_4]$ and $[Ag_5L^{II}_5]$

A suspension of $HL^{I,II}$ (0.390 and 0.404 g, respectively; 1 mmol) in aqueous methanol (15 mL) was mixed with KOH (0.062 g, 1.1 mmol). The resulting mixture was added dropwise to a suspension of CuI or AgNO₃ (0.190 and 0.170 g, respectively; 1 mmol) in aqueous methanol (15 mL). The mixture was stirred at room temperature for 5 h. The resulting precipitate of KI or KNO₃ was filtered off and the solvent was then removed in vacuum. The residue was recrystallised from a CH₂Cl₂–*n*-hexane mixture (1 : 3, v/v).

[Cu₃L^I₃]: Yield: 0.412 g (91%). IR: 579 (P=S), 967 (POC), 1536 (SCN), 1707 (C=O), 3261 (NH) cm⁻¹. ¹H NMR: 1.28 (d, ³ $J_{H,H} = 6.0$ Hz, 18 H, CH₃, *i*Pr), 1.35 (d, ³ $J_{H,H} = 6.1$ Hz, 18 H, CH₃, *i*Pr), 3.91 (s, 9 H, CH₃, Me), 4.82 (d. sept, ³ $J_{H,H} = 6.1$ Hz, ³ $J_{P,H} = 10.6$ Hz, 6 H, OCH), 7.04 (d. t, ³ $J_{H,H} = 7.5$ Hz, ⁴ $J_{H,H} = 1.2$ Hz, 3 H, C₆H₄), 7.42 (d. t, ³ $J_{H,H} = 7.5$ Hz, ⁴ $J_{H,H} = 1.4$ Hz, 3 H, C₆H₄), 7.97 (d. d, ³ $J_{H,H} = 7.9$ Hz, ⁴ $J_{H,H} = 1.4$ Hz, 3 H, C₆H₄), 8.51 (d, ³ $J_{H,H} = 8.4$ Hz, ⁴ $J_{H,H} = 1.4$ Hz, 3 H, C₆H₄), 10.90 (d, ⁴ $J_{PNCNH} = 6.3$ Hz, 3 H, NH) ppm. ³¹P{¹H} NMR: 52.9 ppm. *Anal*. Calc. for C₄₅H₆₆Cu₃N₆O₁₂P₃S₆ (1358.97): C 39.77, H 4.90, N 6.18. Found: C 39.92, H 4.83, N 6.26.

[**Cu**₃**L**^{**II**}₃]: Yield: 0.392 g (84%). IR: 582, 585 (P=S), 974 (POC), 1540, 1543 (SCN), 1710 (C=O), 3273 (NH) cm⁻¹. ¹H NMR: 1.28 (d, ³*J*_{H,H} = 6.2 Hz, 18 H, CH₃, *i*Pr), 1.35 (d, ³*J*_{H,H} = 6.2 Hz, 18 H, CH₃, *i*Pr), 1.41 (t, ³*J*_{H,H} = 7.0 Hz, 9 H, CH₃, Et), 4.37 (q, ³*J*_{H,H} = 7.0 Hz, 6 H, CH₂, Et), 4.83 (d. sept, ³*J*_{H,H} = 6.2 Hz, ³*J*_{P,H} = 10.6 Hz, 6 H, OCH), 7.05 (t, ³*J*_{H,H} = 7.5 Hz, 3 H, C₆H₄), 7.41 (t, ³*J*_{H,H} = 7.5 Hz, 3 H, C₆H₄), 7.98 (d, ³*J*_{H,H} = 7.9 Hz, 3 H,

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2012

> $C_{6}H_{4}), 8.50 \text{ (d, }{}^{3}J_{\text{H,H}} = 8.4 \text{ Hz}, 3 \text{ H}, C_{6}H_{4}), 10.95 \text{ (d, }{}^{4}J_{\text{PNCNH}} = 7.9 \text{ Hz}, 3 \text{ H}, \text{NH}) \text{ ppm. }{}^{31}\text{P}{}^{1}\text{H} \text{ NMR: 53.7 ppm.}$ *Anal.* Calc. for $C_{48}H_{72}Cu_{3}N_{6}O_{12}P_{3}S_{6}$ (1401.05): C 41.15, H 5.18, N 6.00. Found: C 41.03, H 5.24, N 5.95. [**Ag_4L**_{4}]: Yield: 0.433 g (87%). IR: 584 (P=S), 979 (POC), 1531 (SCN), 1703 (C=O), 3268 (NH) cm⁻¹. ${}^{1}\text{H} \text{ NMR:}$ 1.30 (d, ${}^{3}J_{\text{H,H}} = 6.1 \text{ Hz}, 24 \text{ H}, \text{CH}_{3}, i\text{Pr}), 1.34 (d, {}^{3}J_{\text{H,H}} = 6.0 \text{ Hz}, 24 \text{ H}, \text{CH}_{3}, i\text{Pr}), 3.90 (s, 12 \text{ H}, \text{CH}_{3}, \text{Me}), 4.80 (d.$ sept, ${}^{3}J_{\text{H,H}} = 6.1 \text{ Hz}, {}^{3}J_{\text{P,H}} = 10.6 \text{ Hz}, 8 \text{ H}, \text{OCH}), 7.00 (br. s, 4 \text{ H}, C_{6}H_{4}), 7.38 (br. s, 4 \text{ H}, C_{6}H_{4}), 7.93 (br. s, 4 \text{ H}, C_{6}H_{4}), 8.48 (br. s, 4 \text{ H}, C_{6}H_{4}), 11.09 (br. s, 4 \text{ H}, \text{NH}) \text{ ppm. } {}^{31}\text{P}{}^{1}\text{H} \text{ NMR: 55.4 ppm. } Anal. Calc. for C_{60}H_{88}Ag_{4}N_{8}O_{16}P_{4}S_{8} (1989.25): C 36.23, \text{H} 4.46, N 5.63. Found: C 36.38, \text{H} 4.39, N 5.70.$ [**Ag_5L**^{II}₅]: Yield: 0.414 g (81%). IR: 580 (P=S), 991 (POC), 1537 (SCN), 1712 (C=O), 3257 (NH) cm⁻¹. ${}^{1}\text{H}$ NMR: 1.33 (d, ${}^{3}J_{\text{H,H}} = 6.0 \text{ Hz}, 30 \text{ H}, \text{CH}_{3}, iPr), 1.37 (d, {}^{3}J_{\text{H,H}} = 6.1 \text{ Hz}, {}^{3}J_{\text{P,H}} = 10.8 \text{ Hz}, 10 \text{ H}, \text{OCH}),$ 7.09 (br. s, 5 H, C₆H₄), 7.43 (br. s, 5 H, C₆H₄), 7.99 (br. s, 5 H, C₆H₄), 8.42 (br. s, 5 H, C₆H₄), 11.16 (br. s, 5 H, C.99 (br. s, 5 H, C₆H₄), 8.42 (br. s, 5 H, C₆H₄), 11.16 (br. s, 5 H, C.99 (br. s, 5 H, C₆H₄), 7.43 (br. s, 5 H, C₆H₄), 7.99 (br. s, 5 H, C₆H₄), 8.42 (br. s, 5 H, C₆H₄), 11.16 (br. s, 5 H, C.99 (br. s, 5 H, C₆H₄), 8.42 (br. s, 5 H, C₆H₄), 11.16 (br. s, 5 H, C.99 (br. s, 5 H, C₆H₄), 7.43 (br. s, 5 H, C₆H₄), 7.99 (br. s, 5 H, C₆H₄), 8.42 (br. s, 5 H, C₆H₄), 11.16 (br. s, 5 H, C.99 (

> NH) ppm. ³¹P{¹H} NMR: 56.1 ppm. *Anal*. Calc. for C₈₀H₁₂₀Ag₅N₁₀O₂₀P₅S₁₀ (2556.70): C 37.58, H 4.73, N 5.48. Found: C 37.71, H 4.65, N 5.54.

Synthesis of [Ag(phen)L^{II}]

Path A. A suspension of **phen** (0.090 g, 0.5 mmol) in anhydrous CH_2Cl_2 (10 mL) was added dropwise to a suspension of $[Ag_5L^{II}_5]$ (0.256 g, 0.1 mmol) in anhydrous CH_2Cl_2 (10 mL). The mixture was stirred at room temperature for 4 h. The solvent was then removed in vacuum. The residue was recrystallised from a CH_2Cl_2 –*n*-hexane mixture (1 : 5, v/v).

Path B. A suspension of $\mathbf{HL}^{\mathbf{II}}$ (0.404 g, 1 mmol) in aqueous methanol (10 mL) was mixed with KOH (0.062 g, 1.1 mmol). The resulting mixture was added dropwise to a suspension of AgNO₃ (0.170 g, 1 mmol) and **phen** (0.180 g, 1 mmol) in anhydrous CH₂Cl₂ (10 mL). The mixture was stirred at room temperature for 4 h. The resulting precipitate of KNO₃ was filtered off and the solvent was then removed in vacuum. The residue was recrystallised from a CH₂Cl₂–*n*-hexane mixture (1 : 5, v/v).

[Ag(phen)L^{II}]: Yield: 0.332 g (96%, *Path A*); 0.609 g (88%, *Path B*). IR: 572 (P=S), 1003 (POC), 1516 (SCN), 1710 (C=O), 3269 (NH) cm⁻¹. ¹H NMR: 1.39 (d, ³ $J_{H,H} = 6.1$ Hz, 6 H, CH₃, *i*Pr), 1.44 (t, ³ $J_{H,H} = 7.0$ Hz, 3 H, CH₃, Et), 1.48 (d, ³ $J_{H,H} = 6.1$ Hz, 6 H, CH₃, *i*Pr), 4.47 (q, ³ $J_{H,H} = 7.0$ Hz, 2 H, CH₂, Et), 4.86–5.07 (m, 2 H, OCH), 7.16–9.37 (m, C₆H₄ + phen, overlapping with the solvent signal), 10.97 (br. s, 1 H, NH) ppm. ³¹P{¹H} NMR: 58.0 ppm. *Anal.* Calc. for C₂₈H₃₂AgN₄O₄PS₂ (691.55): C 48.63, H 4.66, N 8.10. Found: C 48.49, H 4.71, N 8.02.

X-Ray crystallography

The X-ray data were collected on a STOE IPDS-II diffractometer with graphite-monochromatised Mo-K_{α} radiation generated by a fine-focus X-ray tube operated at 50 kV and 40 mA. The reflections of the images were indexed, integrated and scaled using the X-Area data reduction package.¹ Data were corrected for absorption using the PLATON program.² The structures were solved by direct methods using the SHELXS-97 program³ and

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2012

refined first isotropically and then anisotropically using SHELXL-97.³ Hydrogen atoms were revealed from $\Delta \rho$ maps and those bonded to C were refined using appropriate riding models. The NH hydrogen atoms in [Cu₃L^I₃] was freely refined whereas the same hydrogen atoms in [Cu₃L^{II}₃] and [Ag₄L^I₄] were geometrically positioned and refined using a riding model with N–H = 0.88 Å and U(H) = 1.2 U_{eq}(N). Figures were generated using the program Mercury.⁴

In $[Cu_3L^{II}_3]$ the methyl groups of two *i*Pr and one O*i*Pr are disordered over two positions with site occupation factors of 0.752(8), 0.50(3) and 0.51(3) for the major occupied site. The disordered atoms have been refined isotropically. In $[Ag_4L^{I}_4]$ one O*i*Pr and one C(O)OCH₃ groups are disordered over two positions with site occupation factors of 0.50(1) and 0.54(1), respectively, for the major occupied site. The disordered atoms have been refined isotropically.

Crystal data for [**Cu**₃**L**^I₃]. C₄₅H₆₆Cu₃N₆O₁₂P₃S₆, $M_r = 1358.93$ g mol⁻¹, trigonal, space group *R*-3, a = 17.6497(2), b = 17.6497(2), c = 34.4980(5) Å, V = 9306.8(2) Å³, Z = 6, $\rho = 1.455$ g cm⁻³, μ (Mo-K α) = 1.356 mm⁻¹, reflections: 25686 collected, 6312 unique, $R_{int} = 0.0244$, $R_1(all) = 0.0473$, $wR_2(all) = 0.0960$.

Crystal data for [**Cu**₃**L**^{II}₃]. C₄₈H₇₂Cu₃N₆O₁₂P₃S₆, $M_r = 1401.01 \text{ g mol}^{-1}$, monoclinic, space group $P2_1/n$, a = 11.8107(4), b = 19.7508(5), c = 27.3802(10) Å, $\beta = 90.034(3)^\circ$, V = 6387.0(4) Å³, Z = 4, $\rho = 1.457 \text{ g cm}^{-3}$, μ (Mo-K α) = 1.319 mm⁻¹, reflections: 43431 collected, 12987 unique, $R_{int} = 0.0449$, $R_1(all) = 0.0593$, $wR_2(all) = 0.1406$. **Crystal data for** [**Ag**₄**L**^I₄]. C₆₀H₈₈Ag₄N₈O₁₆P₄S₈, $M_r = 1989.22 \text{ g mol}^{-1}$, tetragonal, space group $I4_1/a$, a = 27.4538(9, b = 27.4538(9), c = 10.7505(4) Å, V = 8102.8(5) Å³, Z = 4, $\rho = 1.631 \text{ g cm}^{-3}$, μ (Mo-K α) = 1.301 mm⁻¹, reflections: 75564 collected, 4145 unique, $R_{int} = 0.0751$, $R_1(all) = 0.0791$, $wR_2(all) = 0.1373$.

CCDC 805255 ($[Cu_3L^I_3]$), 847766 ($[Cu_3L^{II}_3]$) and 813939 ($[Ag_4L^I_4]$) contain the supplementary crystallographic data. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

References

- Stoe & Cie. X-AREA. Area-Detector Control and Integration Software. Stoe & Cie, Darmstadt, Germany, 2001.
- 2 A. L. Spek, Acta Crystallogr., 2009, **D65**, 148.
- 3 G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.
- 4 I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, *Acta Crystallogr.*, 2002, **B58**, 389.

Fig. S1 π ··· π interactions in the structure of [Cu₃L^{II}₃]. Hydrogen atoms, *i*PrO and EtO(O)C groups are omitted for clarity.

Fig. S2 π ··· π interactions in the structure of [Ag₄L^I₄]. Hydrogen atoms, *i*PrO and MeO(O)C groups are omitted for clarity.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is The Royal Society of Chemistry 2012

	U V		01		
Bond lengths					
Cu(1)–S(1)	2.2236(5)	N(2)–C(1)	1.3582(19)	P(1)–O(2)	1.5699(12)
Cu(1)–S(2)	2.2410(4)	P(1)–N(1)	1.6132(14)	P(1)–S(1)	1.9829(6)
Cu(1)–S(2)#1	2.1981(4)	P(1)–O(1)	1.5656(13)	S(2)–C(1)	1.7687(16)
N(1)–C(1)	1.2972(19)				
Bond angles					
Cu(1)#1-S(2)-Cu(1)	113.007(19)	P(1)–S(1)–Cu(1)	90.77(2)	O(1)–P(1)–N(1)	106.72(7)
S(1)–Cu(1)–S(2)	113.407(17)	C(1)–N(1)–P(1)	129.08(12)	O(1)–P(1)–O(2)	102.04(7)
S(2)#1-Cu(1)-S(1)	132.780(17)	N(1)-C(1)-N(2)	120.73(14)	O(1)–P(1)–S(1)	114.57(5)
S(2)#1-Cu(1)-S(2)	113.68(2)	N(1)–C(1)–S(2)	124.48(12)	O(2)–P(1)–N(1)	105.87(7)
C(1)–S(2)–Cu(1)	106.77(5)	N(1)–P(1)–S(1)	116.68(6)	O(2)–P(1)–S(1)	109.64(5)
C(1)-S(2)-Cu(1)#1	115.82(5)	N(2)-C(1)-S(2)	114.74(11)		
Symmetry operator: #1	1 - x + y, -x + 1,	z			

	•			
Table S1	. Selected bond	l lengths (Å)	and angles () for $[Cu_3L_3^I]$

Electronic Supplementary Material (ESI) for CrystEngComm This journal is The Royal Society of Chemistry 2012

		•		
Table S2.	Selected bond	lengths (Å) and angles	(°) for $[Cu_3L_3^{II}]$

Bond lengths					
Cu(1A)–Cu(1B)	2.8073(6)	N(2)–C(1)	1.354(4)	P(1A)-O(2A)	1.665(4)
Cu(1)-S(1)	2.2349(10)	N(1A)–C(1A)	1.292(5)	P(1B)–O(2B)	1.567(3)
Cu(1)–S(2)	2.2303(10)	N(2A)–C(1A)	1.352(5)	P(1B)–O(1B)	1.587(3)
Cu(1)–S(2B)	2.2302(9)	N(1B)–C(1B)	1.287(4)	P(1B)–O(1")	1.643(16)
Cu(1A)–S(1A)	2.2433(13)	N(2B)–C(1B)	1.362(4)	P(1)–S(1)	1.9780(12)
Cu(1A)–S(2A)	2.2096(10)	P(1)–N(1)	1.616(3)	P(1A)–S(1A)	1.9631(17)
Cu(1B)–S(1B)	2.2492(12)	P(1A)–N(1A)	1.585(3)	P(1B)–S(1B)	1.9735(14)
Cu(1B)–S(2B)	2.2032(9)	P(1B)–N(1B)	1.608(3)	S(2)–C(1)	1.771(3)
S(2)–Cu(1A)	2.2278(11)	P(1)–O(1)	1.567(2)	S(2A)–C(1A)	1.785(4)
S(2A)–Cu(1B)	2.2510(10)	P(1)–O(2)	1.570(2)	S(2B)–C(1B)	1.778(3)
N(1)–C(1)	1.299(4)	P(1A)–O(1A)	1.552(3)		
Bond angles					
Cu(1A)–S(2)–Cu(1)	94.74(4)	C(1A)–S(2A)–Cu(1A)	106.56(12)	N(1A)–P(1A)–S(1A)	121.54(13)
Cu(1A)-S(2A)-Cu(1B)	78.00(3)	C(1A)–S(2A)–Cu(1B)	98.76(12)	N(1B)–P(1B)–S(1B)	120.88(13)
Cu(1B)–S(2B)–Cu(1)	95.56(3)	C(1B)–S(2B)–Cu(1)	107.72(11)	O(1)–P(1)–N(1)	110.89(15)
S(1A)–Cu(1A)–Cu(1B)	111.51(4)	C(1B)–S(2B)–Cu(1B)	107.78(11)	O(2)–P(1)–N(1)	103.67(14)
S(1B)–Cu(1B)–Cu(1A)	117.24(3)	P(1)–S(1)–Cu(1)	95.20(4)	O(1A)–P(1A)–N(1A)	105.59(19)
S(2)–Cu(1A)–Cu(1B)	102.28(3)	P(1A)–S(1A)–Cu(1A)	97.05(6)	O(2A)–P(1A)–N(1A)	97.51(18)
S(2A)–Cu(1B)–Cu(1A)	50.34(3)	P(1B)-S(1B)-Cu(1B)	96.23(5)	O(1B)-P(1B)-N(1B)	104.20(17)
S(2A)–Cu(1A)–Cu(1B)	51.66(3)	C(1)–N(1)–P(1)	129.1(2)	O(2B)-P(1B)-N(1B)	104.27(16)
S(2B)–Cu(1B)–Cu(1A)	104.77(3)	C(1A)–N(1A)–P(1A)	135.0(3)	O(1")-P(1B)-N(1B)	110.1(6)
S(1B)–Cu(1B)–S(2A)	120.58(4)	C(1B)–N(1B)–P(1B)	134.3(3)	O(1)–P(1)–O(2)	102.52(14)
S(2)–Cu(1)–S(1)	114.40(4)	N(1)-C(1)-N(2)	120.8(3)	O(1A)–P(1A)–O(2A)	98.98(19)
S(2)–Cu(1A)–S(1A)	125.65(4)	N(1A)-C(1A)-N(2A)	121.4(3)	O(2B)–P(1B)–O(1B)	98.14(18)
S(2A)–Cu(1A)–S(1A)	116.53(4)	N(1B)-C(1B)-N(2B)	120.5(3)	O(2B)–P(1B)–O(1")	119.8(6)
S(2A)–Cu(1A)–S(2)	117.82(4)	N(1)-C(1)-S(2)	126.8(3)	O(1)–P(1)–S(1)	108.86(10)
S(2B)–Cu(1)–S(1)	126.22(4)	N(1A)-C(1A)-S(2A)	128.4(3)	O(2)–P(1)–S(1)	110.70(11)
S(2B)–Cu(1)–S(2)	119.38(4)	N(1B)-C(1B)-S(2B)	127.6(3)	O(1A)–P(1A)–S(1A)	118.48(16)
S(2B)–Cu(1B)–S(1B)	115.28(4)	N(2)-C(1)-S(2)	112.3(2)	O(2A)–P(1A)–S(1A)	110.49(14)
S(2B)–Cu(1B)–S(2A)	124.11(4)	N(2A)-C(1A)-S(2A)	110.2(3)	O(1B)–P(1B)–S(1B)	112.76(15)
C(1)–S(2)–Cu(1)	105.69(11)	N(2B)-C(1B)-S(2B)	111.7(2)	O(2B)–P(1B)–S(1B)	113.77(12)
C(1)–S(2)–Cu(1A)	105.82(12)	N(1)–P(1)–S(1)	118.90(11)	O(1")–P(1B)–S(1B)	88.5(6)

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2012

Bond lengths					
Ag(1)–S(1)	2.477(2)	C(1)–N(2)	1.358(6)	P(1)–O(2)	1.680(11)
Ag(1)–S(2)	2.5134(15)	C(1)–S(2)	1.767(5)	P(1)–O(2')	1.548(8)
Ag(1)–S(2)#1	2.4182(16)	P(1)–N(1)	1.616(5)	P(1)–S(1)	1.951(3)
C(1)–N(1)	1.283(7)	P(1)–O(1)	1.560(5)		
Bond angles					
Ag(1)#2–S(2)–Ag(1)	92.15(5)	C(1)–N(1)–P(1)	128.9(4)	N(1)–P(1)–S(1)	117.0(2)
S(1)–Ag(1)–S(2)	104.21(6)	N(1)-C(1)-N(2)	120.5(5)	O(1)–P(1)–O(2)	94.9(4)
S(2)#1-Ag(1)-S(1)	134.84(6)	N(1)–C(1)–S(2)	125.5(4)	O(1)–P(1)–O(2')	112.4(4)
S(2)#1-Ag(1)-S(2)	120.93(6)	N(2)–C(1)–S(2)	114.0(4)	O(1)–P(1)–S(1)	115.4(2)
C(1)–S(2)–Ag(1)	102.27(18)	N(1)–P(1)–O(1)	107.1(3)	O(2)–P(1)–S(1)	120.9(4)
C(1)-S(2)-Ag(1)#2	111.14(19)	N(1)–P(1)–O(2)	98.2(4)	O(2')–P(1)–S(1)	94.9(4)
P(1)–S(1)–Ag(1)	94.49(8)	N(1)-P(1)-O(2')	109.7(3)		
Symmetry operators: $\#1 - y + 5/4$, $x + 1/4$, $-z + 1/4$; $\#2 y - 1/4$, $-x + 5/4$, $-z + 1/4$					

Table S3. Selected bond lengths (Å) and angles (°) for $[Ag_4L^I_4]$

Table S4. Hydrogen bond lengths (Å) and angles (°) for $[Cu_3L^{I,II}_3]$ and $[Ag_4L^{I}_4]$

Complex	D–H···A	<i>d</i> (D–H)	$d(\mathbf{H}\cdots\mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	∠(DHA)
[Cu ₃ L ^I ₃]	$N(2)-H(2)\cdots O(3)$	0.81(2)	2.05(2)	2.6794(19)	133.8(19)
[Cu ₃ L ^{II} ₃]	N(2)–H(2)····O(3)	0.88	2.07	2.664(4)	<mark>124</mark>
	N(2A)-H(2A1)····O(3A)	0.88	1.91	2.649(4)	<mark>141</mark>
	$N(2B)-H(2B)\cdots O(3B)$	0.88	1.98	2.647(4)	<mark>132</mark>
[Ag ₄ L ^I ₄]	N(2)–H(2)····O(3)	0.88	2.00	2.692(9)	<mark>135</mark>
	$N(2)-H(2)\cdots O(3')$	0.88	1.92	2.653(9)	<mark>140</mark>

Table S5. Selected $\pi \cdot \cdot \pi$ interactions for $[Cu_3L_3^{II}]$ and $[Ag_4L_4^{II}]$

				0	
	$\operatorname{Cg}(I)^{a}$	$\operatorname{Cg}(J)^{a}$	$Cg-Cg^{b}(A)$	Dihedral angle (°)	$\operatorname{Beta}^{c}(^{\circ})$
$[\mathbf{Cu}_{3}\mathbf{L}^{\mathbf{II}}_{3}]^{d}$	Cg(8)	Cg(8)#1	4.263(2)	0.03	38.23
	Cg(9)	Cg(9)#2	3.896(2)	0.03	25.65
$[\mathbf{Ag_4L_4}]^e$	Cg(2)	Cg(2)#1	3.941(5)	0.00	26.43

^{*a*} Cg refers to the ring center of gravity and the numbers represent the rings involved in the interactions.

^b Cg–Cg: distance between ring centroids.

^c Beta: angle $Cg(I) \rightarrow Cg(J)$ vector and normal to plane *I*.

^{*d*} Cg(8): C(11A)–C(12A)–C(13A)–C(14A)–C(15A)–C(16A). Cg(9): C(11B)–C(12B)–C(13B)–C(14B)–C(15B)–C(16B). Symmetry code: #1 - x, 1 - y, 1 - z; #2 - x, 2 - y, 1 - z.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2012

^{*e*} Cg(2): C(11)–C(12)–C(13)–C(14)–C(15)–C(16). Symmetry code: #1 3/2 - x, 3/2 - y, 1/2 - z.