# Supplementary Information for

# One in half a million: A Solid Form Informatics study of a pharmaceutical crystal structure

Peter T. A. Galek, Elna Pidcock, Peter. A. Wood, Ian J. Bruno & Colin R. Groom

## Contents

- 1. Intramolecular analysis
  - 1.1. Chemical analysis
  - 1.2. Intramolecular geometry
  - 1.3. Molecular descriptors
  - 1.4. Electrostatic potential energy map

#### 2. Intermolecular analysis

- 2.1. H-bond & short contact geometries
- 2.2. CSD contact distributions
- 2.3. <u>H-bond motif analysis</u>
- 3. <u>Supramolecular Analysis</u>
  - 3.1. Crystal lattice data and descriptors
  - 3.2. Interaction energies & Morphology
  - 3.3. Structural Relationships in the CSD
- 4. <u>Assessing a potential co-crystal formulation</u>
  - 4.1. Shape descriptors for co-former selection
  - 4.2. <u>H-bond prediction</u>

#### 1. Chemical Analysis

#### **1.1. Basic chemical information** Table S1.

Common Name; Synonyms Lamotrigine; Lamictal Systematic Name 6-(2,3-Dichlorophenyl)-1,2,4-triazine-3,5-diamine CI

**Chemical Diagram** 

**Empirical Formula SMILES String** 

Std. InChl

Bioactivity information:

C9 H7 Cl2 N5 Clc2c(Cl)c(c1nnc(nc1N)N)ccc2 InChI=1S/C9H7Cl2N5/c10-5-3-1-2-4(6(5)11)7-8(12)14-9(13)16-15-7/h1-3H,(H4,12,13,14,16) Antiepileptic drug; Used in the treatment of bipolar I disorder; Blocks voltage-gated sodium and calcium channels and inhibits release of excitatory neurotransmitters such as glutamate

3D crystal conformation with labelled atoms

Amine a NH<sub>2</sub> Ν Triazine

NH<sub>2</sub>

Amine b

CI

CI

CI H<sub>2</sub>N

Assignment of hydrogen bonding groups

#### 1.2. Molecular geometry analysis

Table S2. Molecular Geometry Summary, excluding H atoms

| Bond data          | 17 bonds. 0 <b>unusual</b> (sufficient data)  |
|--------------------|-----------------------------------------------|
| Angle Data         | 24 angles. <b>0 unusual</b> (sufficient data) |
| Torsion Data       | 4 Flexible Torsion angles. 0 Unusual          |
| Ring Geometry Data | 2 Rings. O Unusual.                           |

**Figure S1.** Selected geometries compared with corresponding CSD distributions. a) C7-N1 bond, showing largest Z-score b) C9-N4 bond c)C6-C5-C4 angle showing smallest z-score. Metal-organic structures were excluded. Similar fragments were included when the number of exact matches was <15 for bonds, angles and rings, and < 40 for torsions.



#### 1.3. Molecular descriptors

#### Table S3.

| Property                       | Value                 | Property                     | Value                 |
|--------------------------------|-----------------------|------------------------------|-----------------------|
| Molecular Mass                 | 256.091               | Cyclicity                    | 0.7059                |
| Atom count                     | 20                    | Enclosing box ratio L:S      | 1.730                 |
| Surface Area (marvin calc. 3D) | 236.75 Å <sup>2</sup> | Enclosing box ratio M:S      | 1.200                 |
| Polar Surface Area (PSA)       | 90.71 Å <sup>2</sup>  | Enclosing box ratio L:M      | 1.441                 |
| Fraction PSA                   | 38.3 %                | ALogP                        | 2.426                 |
| # Rotatable Bonds              | 1                     | Log D (pH 7.4)               | 2.422                 |
| # Donor H Atoms                | 4                     | Heat of Formation<br>(MOPAC) | 84.2068 kcal/mol      |
| #H-bond Acceptors              | 5                     | Dipole (magnitude)           | 2.145 debye           |
| Fraction N,O atoms             | 0.3125                | Dipole (x, y, z)             | -1.431, -1.493, 0.568 |
| Fraction Cl, Br, I, F          | 0.125                 |                              |                       |

## **1.4. Calculated electrostatics**

**Figure S2.** Electrostatic potential (eV) mapped onto molecular van-der-Waals surface. The electropositive amine hydrogen donors are easily visible, as are the electronegative N atoms of the triazine ring. Some variation in the potential around the dichlorobenzene ring is also apparent, suggesting Cl can be a weak H acceptor in this case, or that CH could be a weak H donor.



#### 2. Intermolecular Analysis

# 2.1. Crystal Lattice Data

#### Table S4.

| Unit Cell   |             | Z                        | Z: 8 Z': 1    |
|-------------|-------------|--------------------------|---------------|
| а           | 19.136(3)   | R-factor(%)              | 2.81          |
| b           | 8.6409(12)  | Density (calculated)     | 1.607 (1.607) |
| С           | 13.5549(18) | Packing coefficient      | 0.72          |
| α           | 90          | %void space (1.2Å probe) | 0.0           |
| β           | 109.172(2)  |                          |               |
| γ           | 90          |                          |               |
| Space Group | C2/c        |                          |               |
| Cell Volume | 2117.02     |                          |               |

#### 2.2.Hydrogen bond geometries

**Figure S3.** Hydrogen bonds as dashed lines in EFEMUX01. 4 molecules are shown making up a motif arranged about the 2-fold screw axis. The donor and acceptor atoms are labelled.



Table S5. a) H-bond geometries, b) Short contact geometries in EFEMUX01

a)

| Donor D | Acceptor A | Symm. op. 1 | Symm. op. 2    | H•••A<br>Distance | H•••A<br>Distance (r <sub>vdw</sub><br>corrected) | D-H•••A<br>Angle |
|---------|------------|-------------|----------------|-------------------|---------------------------------------------------|------------------|
| N3-H4   | N1         | x,1-y,1/2+z | 1.5-x,1.5-y,-z | 2.539             | -0.211                                            | 155(2)           |
| N3-H5   | N4         | x,y,z       | 1.5-x,1.5-y,-z | 2.33              | -0.42                                             | 177(2)           |
| N5-H6   | N2         | x,y,z       | x,1-y,1/2+z    | 2.399             | -0.351                                            | 151(2)           |

| Atom X | Atom V | Symm.          | Symm on 2      | X•••Y<br>Distance | X•••Y<br>Distance (r <sub>vdw</sub> | X-H•••Y Angle |
|--------|--------|----------------|----------------|-------------------|-------------------------------------|---------------|
| C6-H3  | N4     | ор. 1<br>х у 7 | 1 5-x 1/2-v -z | 2 597             | -0 153                              | 134.6(1)      |
| N5-H7  | CI2    | X.V.Z          | 2-x.v.1/2-z    | 2.648             | -0.302                              | 151(2)        |
| C5-H2  | N4     | X,Y,Z          | x,-1+y,z       | 2.721             | -0.029                              | 169.1(1)      |
| C5     | C3     | X,Y,Z          | 2-x,-y,-z      | 3.319             | -0.081                              | N/A           |
| C6     | CI2    | X,Y,Z          | 2-x,-y,-z      | 3.336             | -0.114                              | N/A           |
| C4     | C2     | X,Y,Z          | 2-x,-y,-z      | 3.345             | -0.055                              | N/A           |
| C3     | C3     | x,y,z          | 2-x,y,1/2-z    | 3.357             | -0.043                              | N/A           |

## **2.3.CSD Contact distributions**

**Figure 4a.** Scatterplots showing density of short-contact atoms in the vicinity of the lamotrigine molecule, coloured by Isostar propensity.



**Figure 4b.** Geometric overlay of observed hydrogen bonds in EFEMUX01 with scatterplots of observed close contacts between the same atom types from the CSD, coloured by Isostar propensity. A) aromatic N interaction with NH<sub>2</sub> group. B) Pyridizine fragment interaction with NH<sub>2</sub> groups, C) aromatic-Cl group interaction with NH<sub>2</sub> group.



**Figure 4c.** Histograms showing the distribution of atom-atom contact distances in the CSD by atom type as found in lamotrigine i) Aromatic Chloro ii) Aromatic amino planar, iii)Aromatic N, in 6-rings iv) nitrogen in N(ar)-CH-N(ar). The peak below sum van der Waals radii in ii) indicates a preference for close contacts at this donor.

i)Aromatic Chloro

ii) Aromatic amino planar





# 2.4.Motif Analysis

<u>Scheme 1</u> - Functional group representation used in interaction motif analysis. Atom super-script labels refer to the coordination number of the specific atoms.



Table S6. H-bond motif statistics.

| (a) Aminopyrdine<br>homo-motif |                                                           | No. of structures | Frequency of<br>observation | Proportion of<br>observed motifs |
|--------------------------------|-----------------------------------------------------------|-------------------|-----------------------------|----------------------------------|
| R2 ring dimer                  | Р <sup>172</sup> Н—N<br>С <sup>173</sup> С <sup>173</sup> | 631               | 43.3%                       | 75.3%                            |
| Infinite chain                 | N <sup>T2</sup>                                           | 256               | 17.6%                       | 30.5%                            |
| Larger ring (R3,<br>R4, R6)    |                                                           | 29                | 1.9%                        | 3.5%                             |
| Discrete contact               | N <sup>121</sup> ·····C <sup>13</sup> N <sup>-</sup> H    | 26                | 1.7%                        | 3.1%                             |

| (b) Group A<br>hetero-motif | Examples                                                | No. of contacts | Frequency of occurrence | Proportion of<br>observed<br>interactions |
|-----------------------------|---------------------------------------------------------|-----------------|-------------------------|-------------------------------------------|
| Oxygen (1-<br>coordinate)   | O=C, O=N, O=S                                           | 575             |                         | 43.3%                                     |
| Oxygen (2-<br>coordinate)   | Н-О-Н, Н-О-С, С-О-С                                     | 443             |                         | 33.4%                                     |
| Nitrogen (2-<br>coordinate) | C-N=C, aromatic N                                       | 188             |                         | 14.2%                                     |
| Nitrogen (1-<br>coordinate) | N=C                                                     | 47              |                         | 3.5%                                      |
| Nitrogen (3-<br>coordinate) | H <sub>2</sub> N-C, H-NC <sub>2</sub> , NC <sub>3</sub> | 20              |                         | 1.5%                                      |
| Sulfur (1-<br>coordinate)   | S=C                                                     | 20              |                         | 1.5%                                      |
| Other                       | F, Cl, Br, I                                            | 32              |                         | 2.4%                                      |

## 3. Supramolecular Analysis

# 3.1. Crystal Lattice data and descriptors <u>Table S7.</u>

|             | Value                      | Structure Property    | Value                    |
|-------------|----------------------------|-----------------------|--------------------------|
| а           | 19.136(3) Å                | R-factor (%)          | 2.81                     |
| b           | 8.6409(12) Å               | Density (reported)    | 1.607 g cm <sup>-3</sup> |
| С           | 13.5549(18) Å              | Density (calculated)  | 1.607 g cm <sup>-3</sup> |
| α           | 90°                        | Temperature           | 294 К                    |
| β           | 109.172(2)°                | Crystal colour        | colourless               |
| γ           | 90°                        | Habit                 | block                    |
| Cell volume | 2117.02 Å <sup>3</sup>     | Packing coefficient   | 0.72                     |
| Space group | C 2/c                      | Percentage void space | 0.0 %                    |
| Z values    | <i>Z</i> : 8 <i>Z</i> ': 1 |                       |                          |

# 3.2.Intermolecular energy calculations and morphology

**Figure S5.** Six highest intermolecular interaction potentials computed from a central molecule and 14 nearest neighbours. Using the UNI intermolecular force-field available *Mercury*. The value of the computed potential energy is shown in each case.







**Figure S6a.** Comparison of Bravais-Friedel-Donnay-Harker (BFDH) morphology prediction of the EFEMUX01 structure and the HABIT morphology prediction. In addition to unit cell data that BFDH relies on, HABIT includes energetic considerations. A blocky morphology can be expected.



**Figure S6b.** HABIT morphology prediction of the EFEMUX01 structure superimposed with a molecule cluster showing the H-bonding network. Molecules are colored by interaction energy with the central (grey) molecule. Color = red > 30 kJmol-1, gold= 21-30 kJmol-1 and green = 10-20 kJmol<sup>-1</sup>. The strong interactions which contribute to the slow growth rate and hence morphological importance of the (200) face can be seen.



**Figure S6c.** Separate display of intermolecular energies within a cluster categorized by size. Color =  $red > 30 \text{ kJmol}^{-1}$ , gold = 21-30 kJmol<sup>-1</sup> and green = 10-20 kJmol<sup>-1</sup>.



**Figure S7a.** Interaction energies between molecules of the 200 crystal face. Dotted lines display the interaction vector between molecule centroids. These are coloured red to blue from most to least energetic (~35 kJMol<sup>-1</sup> to ~10 kJMol<sup>-1</sup>).



Figure S7b. Interaction energies between molecules of the 301 crystal face.



#### 3.3. Structural Relationships in the CSD

### a CSD Refcode Structure Type Secondary components Diagram n.a. **EFEMUX** Polymorph n.a. EFEMUX01 hemikis(succinate) 1,3dioxolane FOXMAH Solvated Salt hemikis (succinate) dimethylsulfoxide FOXLUA hemikis(dl-tartrate) dimethylsulfoxide FOXMEL hemikis(fumarate) dimethylsulfoxide FUHVOU benzoate N,N'dimethylformamide GAVLEV phthalate N,N'dimethylformamide YEXFUD **KADPAG** Solvate methanol isopropanol IJAHOR hydrate **XUVLOP** YERTAR N,N'-dimethylformamide

#### TableS8. Related Structures containing a) Lamotrigine b) derivatives of Lamotrigine\*

\_

| YUCRAQ        | Salt                         | chloride                                                                                            |         |
|---------------|------------------------------|-----------------------------------------------------------------------------------------------------|---------|
| YUCREU        |                              | nitrate                                                                                             |         |
| b CSD Refcode | Tanimoto Similarity<br>Score | Compound                                                                                            | Diagram |
| BEGZUI        | 0.991                        | 3,5-Diamino-6-(2,3,5-<br>trichlorophenyl)-1,2,4-<br>triazine methanol solvate                       |         |
| XUVLUV        | 0.727                        | 2-Isopropyl-3-iminium-5-<br>amino-6-(2,3-<br>dichlorophenyl)-1,2,4 triazine<br>mesylate monohydrate |         |
| LINFOD        | 0.663                        | 3,5-Diamino-6-(2-<br>methylphenyl)-1,2,4-triazine<br>hemihydrate                                    |         |
| CIQLET        | 0.604                        | 3,5-Diamino-6-(2-<br>fluorophenyl)-1,2,4-triazine<br>dimethylformamide                              |         |
| WINMIP        | 0.604                        | 3,5-Diamino-6-(2-<br>fluorophenyl)-1,2,4-triazine<br>methanol solvate                               |         |
| TEKWAH        | 0.598                        | 3,5-Diamino-6-(2-<br>bromophenyl)-1,2,4-triazine<br>methanol solvate                                |         |
| SAPYUD        | 0.582                        | 1-(6-(2-Chlorophenyl)-1,2,4-<br>triazin-3-yl)piperidin-4-ol                                         |         |
| HOBVEA        | 0.514                        | diaminopyrimidine methanol<br>solvate                                                               |         |
| HOBVIE        | 0.514                        | 5-(2,3,5-Trichlorophenyl)-2,4-<br>diaminopyrimidine                                                 |         |
| TIRNOY        | 0.514                        | 5-(2,3,5-Trichlorophenyl)-2,4-<br>diaminopyrimidinium<br>methanesulfonate                           |         |

\*Listing CSD structures whose compounds are chemically similar by fingerprint comparison with Tanimoto coefficient > 0.5.(ref.)

#### **3.3.1.Common Packing Features**

**Figure S9.** a) Overlaid 15 molecule shell in the FOXLUA and FOXMEL structures (viewed down the crystallographic *a* axes, which also coincide). The carbon atoms of the latter are colored green. Good spatial alignment of the chemically different counter ions can be seen. The third DMSO component in each structure is omitted for clarity. b) Common dimer involving aromatic stacking found in EFEMUX01, FOXLUA and HOVBEA. c) common amide-triazine H-bonded dimer motif found in GAVLEV and YERTAR, and EFEMUX01, LINFOD and XUVLUV.





b





#### 4. Assessing a potential co-crystal formulation

#### 4.1.Shape descriptors for co-former selection.

**Table S9.** CSD-based cocrystal former screening a) descriptor values of API/co-formers b) screening protocol applied to co-formers with respect to lamotrigine. See text for definitions of descriptor abbreviations.

| a)                             |                |                |                |                |                |
|--------------------------------|----------------|----------------|----------------|----------------|----------------|
| Compound                       | FNO            | Dipole         | S              | S/L            | M/L            |
| Lamotrigine                    | 0.313          | 4.189          | 6.778          | 0.552          | 0.663          |
| 3,4 butylated hydroxyanisole   | 0.154          | 1.705          | 6.43           | 0.567          | 0.735          |
| methylparaben<br>L-malic acid  | 0.273<br>0.556 | 5.094<br>3.543 | 4.268<br>5.423 | 0.416<br>0.716 | 0.676<br>0.974 |
| nicotinamide<br>nicotinic acid | 0.333<br>0.333 | 1.678<br>2.885 | 3.401<br>3.401 | 0.372<br>0.37  | 0.73<br>0.725  |

#### b)

| Coformer screening           | FNOa-<br>FNOb | dipole a-<br>dipole b | Sa-Sb | Sa/La-<br>Sb/Lb | Ma/La-<br>Ma/Lb | Verdict    |
|------------------------------|---------------|-----------------------|-------|-----------------|-----------------|------------|
| (Pass Mark)                  | <0.294        | <5.94                 | <3.23 | <0.275          | <0.310          |            |
| 3,4 butylated hydroxyanisole | 0.159         | 2.484                 | 0.348 | 0.015           | 0.072           | Pass       |
| methylparaben                | 0.04          | 0.905                 | 2.51  | 0.136           | 0.013           | Pass       |
| L-malic acid                 | 0.243         | 0.646                 | 1.355 | 0.164           | 0.311           | Borderline |
| nicotinamide                 | 0.02          | 2.511                 | 3.377 | 0.18            | 0.067           | Fail       |
| nicotinic acid               | 0.02          | 1.304                 | 3.377 | 0.182           | 0.062           | Fail       |

# **4.2.H-bond prediction**

**Figure S10.** Chemical diagram of lamotrigine and methylparaben with labelled functional groups.



<u>**Table S10.**</u> H-bond propensity predictions for a) pure lamotrigine, b) lamotrigine buytlated hydroxyanisole cocrystal, c) lamotrigine methylparaben cocrystal. Functional groups are labelled according to Fig. S10. Lower and upper bounds calculated at the 95% confidence level based on a  $\chi^2$  distribution.

Key to Bond Formed column: ; Green  $\checkmark$ : observed, Red  $\checkmark$ : not observed. p = observed in pure form, c = unique to cocrystal. Note as no hydroxyanisole cocrystals have been reported, in table b the final column is not annotated with  $\checkmark$  or  $\checkmark$ .

а

| าd<br>rved? |
|-------------|
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |

| Donor                   | Acceptor    | propensity | Lower<br>bound | Upper<br>bound | H-Bond<br>Observed? |
|-------------------------|-------------|------------|----------------|----------------|---------------------|
| amine $NH_2$ a          | triazine N1 | 0.932      | 0.916          | 0.945          | р                   |
| amine NH <sub>2</sub> b | triazine N1 | 0.922      | 0.903          | 0.937          |                     |
| amine $NH_2$ a          | triazine N2 | 0.915      | 0.893          | 0.932          |                     |
| amine NH <sub>2</sub> b | triazine N2 | 0.902      | 0.876          | 0.923          | р                   |
| phenol OH               | triazine N1 | 0.793      | 0.745          | 0.834          | С                   |
| phenol OH               | triazine N2 | 0.749      | 0.692          | 0.800          | С                   |
| amine $NH_2$ a          | triazine N4 | 0.608      | 0.515          | 0.693          | р                   |
| amine $NH_2$ a          | phenol OH   | 0.588      | 0.501          | 0.669          | С                   |
| amine $NH_2$ a          | OMe         | 0.582      | 0.493          | 0.665          | С                   |
| amine NH <sub>2</sub> b | triazine N4 | 0.571      | 0.475          | 0.662          |                     |
| amine NH <sub>2</sub> b | phenol OH   | 0.550      | 0.461          | 0.636          | С                   |
| amine NH <sub>2</sub> b | OMe         | 0.544      | 0.454          | 0.632          | С                   |
| amine $NH_2$ a          | CI5         | 0.385      | 0.341          | 0.431          |                     |
| amine NH <sub>2</sub> b | CI5         | 0.350      | 0.304          | 0.399          |                     |
| amine NH <sub>2</sub> a | CI6         | 0.333      | 0.288          | 0.381          |                     |
| phenol OH               | triazine N4 | 0.302      | 0.221          | 0.397          | С                   |
| amine NH₂ b             | CI6         | 0.300      | 0.255          | 0.349          |                     |
| phenol OH               | phenol OH   | 0.284      | 0.215          | 0.366          | С                   |
| phenol OH               | OMe         | 0.279      | 0.209          | 0.363          | С                   |
| phenol OH               | CI5         | 0.149      | 0.120          | 0.183          | С                   |
| phenol OH               | CI6         | 0.122      | 0.097          | 0.153          | С                   |

b

| Dopor                   | Acceptor    | propensity | Lower | Upper | H-Bond         |
|-------------------------|-------------|------------|-------|-------|----------------|
| DONOI                   |             |            | bound | bound | Observed?      |
| amine $NH_2a$           | triazine N1 | 0.904      | 0.881 | 0.923 | <b>×</b> p     |
| amine NH <sub>2</sub> b | triazine N1 | 0.886      | 0.858 | 0.909 | x              |
| amine NH <sub>2</sub> a | triazine N2 | 0.883      | 0.853 | 0.908 | ×              |
| amine NH <sub>2</sub> b | triazine N2 | 0.862      | 0.826 | 0.892 | ✓p             |
| amine NH <sub>2</sub> a | C=O         | 0.793      | 0.725 | 0.848 | √c             |
| ОН                      | triazine N1 | 0.787      | 0.734 | 0.832 | ×              |
| amine NH <sub>2</sub> b | C=O         | 0.761      | 0.684 | 0.823 | √c             |
| ОН                      | triazine N2 | 0.748      | 0.685 | 0.802 | √c             |
| amine NH <sub>2</sub> a | OMe         | 0.693      | 0.553 | 0.804 | × c            |
| amine NH₂ a             | ОН          | 0.684      | 0.601 | 0.757 | √c             |
| amine NH₂ b             | OMe         | 0.651      | 0.505 | 0.773 | ×c             |
| amine NH <sub>2</sub> b | ОН          | 0.641      | 0.551 | 0.723 | ✓c             |
| ОН                      | C=O         | 0.602      | 0.504 | 0.692 | ж <sub>С</sub> |
| amine NH₂ a             | triazine N4 | 0.563      | 0.463 | 0.657 | ✓p             |
| amine NH₂ b             | triazine N4 | 0.515      | 0.414 | 0.615 | ×              |
| ОН                      | OMe         | 0.470      | 0.324 | 0.620 | × c            |
| ОН                      | ОН          | 0.459      | 0.365 | 0.556 | × c            |
| ОН                      | triazine N4 | 0.335      | 0.245 | 0.440 | × c            |
| amine NH₂ a             | Cl15        | 0.316      | 0.273 | 0.362 | x              |
| amine NH₂ b             | Cl15        | 0.277      | 0.234 | 0.323 | x              |
| amine NH <sub>2</sub> a | Cl16        | 0.274      | 0.232 | 0.321 | ×              |
| amine NH <sub>2</sub> b | Cl16        | 0.238      | 0.197 | 0.284 | ×              |
| ОН                      | Cl15        | 0.154      | 0.123 | 0.190 | ×c             |
| ОН                      | Cl16        | 0.129      | 0.101 | 0.163 | ×c             |

С

**Figure S10**. Hydrogen bonds as dashed lines in the lamotrigine butylated methylparaben cocrystal a) form I b) form II.





a