# Electronic Supplementary Material (ESI) for CrystEngComm # This journal is © The Royal Society of Chemistry 2012 data_global _journal_name_full CrystEngComm _journal_coden_Cambridge 1350 _journal_volume ? _journal_page_first ? _journal_year ? _publ_contact_author_name 'Prof. Quan-Guo Zhai' _publ_contact_author_email zhaiqg@snnu.edu.cn _publ_section_title ; Crystalline 3D open-framework halogeno(cyano)cuprates synthesized in ionic liquids ; loop_ _publ_author_name 'Rui Ding' 'Quan-Guo Zhai' 'Jing-Ping Niu' 'Shuni Li' 'Yucheng Jiang' ; Mancheng Hu ; # Attachment '- 1.cif_R1.txt' data_1 _database_code_depnum_ccdc_archive 'CCDC 853497' #TrackingRef '- 1.cif_R1.txt' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C25 H33 Br2 Cu6 N13' _chemical_formula_weight 1056.70 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Br Br -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M Pnma loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z' 'x+1/2, -y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z' '-x-1/2, y-1/2, z-1/2' _cell_length_a 17.0461(6) _cell_length_b 21.6229(9) _cell_length_c 9.8505(4) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 3630.8(2) _cell_formula_units_Z 4 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used 5298 _cell_measurement_theta_min 2.8206 _cell_measurement_theta_max 28.4950 _exptl_crystal_description prism _exptl_crystal_colour colorless _exptl_crystal_size_max 0.46 _exptl_crystal_size_mid 0.38 _exptl_crystal_size_min 0.29 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.933 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 2072 _exptl_absorpt_coefficient_mu 5.689 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.22382 _exptl_absorpt_correction_T_max 1.00000 _exptl_absorpt_process_details ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. ; _exptl_special_details ; ? ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'Enhance (Mo) X-ray Source' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Xcalibur, Eos, Gemini' _diffrn_measurement_method ? _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 10296 _diffrn_reflns_av_R_equivalents 0.0663 _diffrn_reflns_av_sigmaI/netI 0.0829 _diffrn_reflns_limit_h_min -17 _diffrn_reflns_limit_h_max 21 _diffrn_reflns_limit_k_min -21 _diffrn_reflns_limit_k_max 26 _diffrn_reflns_limit_l_min -5 _diffrn_reflns_limit_l_max 12 _diffrn_reflns_theta_min 3.04 _diffrn_reflns_theta_max 26.37 _reflns_number_total 3810 _reflns_number_gt 2495 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0669P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens ? _refine_ls_hydrogen_treatment ? _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 3810 _refine_ls_number_parameters 103 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0860 _refine_ls_R_factor_gt 0.0595 _refine_ls_wR_factor_ref 0.1507 _refine_ls_wR_factor_gt 0.1401 _refine_ls_goodness_of_fit_ref 1.010 _refine_ls_restrained_S_all 1.010 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.66837(4) 0.57816(4) 0.07985(8) 0.0405(2) Uani 1 1 d . . . Cu2 Cu 0.43225(5) 0.66455(4) 0.31480(9) 0.0455(3) Uani 1 1 d . . . Cu3 Cu 0.44036(5) 0.54798(4) 0.29558(8) 0.0485(3) Uani 1 1 d . . . C1 C 0.4862(4) 0.5114(3) 0.4555(6) 0.0488(16) Uani 0.50 1 d P . . C2 C 0.6045(4) 0.4948(3) -0.1475(6) 0.0347(14) Uani 1 1 d . . . C3 C 0.5270(4) 0.6255(3) 0.2376(6) 0.0373(15) Uani 1 1 d . . . C4 C 0.8335(4) 0.6221(3) 0.1355(6) 0.0387(15) Uani 1 1 d . . . N1 N 0.6311(4) 0.5249(3) -0.0664(6) 0.0544(16) Uani 1 1 d . . . N2 N 0.5786(4) 0.6106(3) 0.1917(6) 0.0462(14) Uani 1 1 d . . . N3 N 0.7777(4) 0.6050(3) 0.1183(5) 0.0441(14) Uani 1 1 d . . . N4 N 0.4862(4) 0.5114(3) 0.4555(6) 0.0488(16) Uani 0.50 1 d P . . Br1 Br 0.46646(5) 0.7500 0.48423(9) 0.0429(3) Uani 1 2 d S . . Br2 Br 0.38706(5) 0.7500 0.12957(8) 0.0375(2) Uani 1 2 d S . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.0224(4) 0.0399(6) 0.0591(5) -0.0062(3) -0.0002(3) -0.0038(4) Cu2 0.0249(4) 0.0336(5) 0.0780(6) -0.0032(4) 0.0112(4) -0.0028(4) Cu3 0.0542(6) 0.0391(6) 0.0522(5) 0.0051(3) -0.0177(4) -0.0080(4) C1 0.056(4) 0.037(4) 0.054(4) -0.002(3) -0.010(3) -0.001(3) C2 0.031(3) 0.023(4) 0.051(3) -0.002(3) -0.003(3) -0.003(3) C3 0.027(3) 0.031(4) 0.053(4) 0.005(3) -0.005(3) -0.008(3) C4 0.018(3) 0.042(5) 0.057(4) -0.001(3) -0.001(3) -0.009(3) N1 0.040(3) 0.048(4) 0.075(4) 0.000(3) -0.001(3) 0.004(3) N2 0.044(4) 0.030(4) 0.065(4) 0.004(3) 0.002(3) 0.001(3) N3 0.048(4) 0.026(3) 0.059(3) -0.011(2) 0.008(3) 0.002(3) N4 0.056(4) 0.037(4) 0.054(4) -0.002(3) -0.010(3) -0.001(3) Br1 0.0378(5) 0.0410(6) 0.0498(5) 0.000 -0.0003(4) 0.000 Br2 0.0319(5) 0.0332(6) 0.0475(5) 0.000 -0.0035(4) 0.000 _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 N1 1.951(7) . ? Cu1 N3 1.989(6) . ? Cu1 N2 2.012(6) . ? Cu2 C3 1.975(7) . ? Cu2 C4 1.979(6) 6_556 ? Cu2 Cu3 2.5314(12) . ? Cu2 Br1 2.5572(10) . ? Cu2 Br2 2.7085(11) . ? Cu3 C2 1.889(6) 5_665 ? Cu3 C1 1.928(6) . ? Cu3 C3 2.307(6) . ? Cu3 C4 2.520(7) 6_556 ? C1 N4 1.111(11) 5_666 ? C1 C1 1.111(11) 5_666 ? C2 N1 1.125(8) . ? C2 Cu3 1.889(6) 5_665 ? C3 N2 1.039(8) . ? C4 N3 1.034(8) . ? C4 Cu2 1.979(6) 6_656 ? C4 Cu3 2.520(7) 6_656 ? Br1 Cu2 2.5572(10) 7_575 ? Br2 Cu2 2.7085(11) 7_575 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 Cu1 N3 128.2(2) . . ? N1 Cu1 N2 111.2(2) . . ? N3 Cu1 N2 120.5(2) . . ? C3 Cu2 C4 126.4(3) . 6_556 ? C3 Cu2 Cu3 60.08(19) . . ? C4 Cu2 Cu3 66.6(2) 6_556 . ? C3 Cu2 Br1 111.92(18) . . ? C4 Cu2 Br1 111.56(19) 6_556 . ? Cu3 Cu2 Br1 139.09(4) . . ? C3 Cu2 Br2 105.34(18) . . ? C4 Cu2 Br2 103.94(19) 6_556 . ? Cu3 Cu2 Br2 130.12(4) . . ? Br1 Cu2 Br2 90.67(3) . . ? C2 Cu3 C1 126.4(3) 5_665 . ? C2 Cu3 C3 115.1(2) 5_665 . ? C1 Cu3 C3 103.9(2) . . ? C2 Cu3 C4 103.1(2) 5_665 6_556 ? C1 Cu3 C4 109.5(3) . 6_556 ? C3 Cu3 C4 93.9(2) . 6_556 ? C2 Cu3 Cu2 121.6(2) 5_665 . ? C1 Cu3 Cu2 111.67(19) . . ? C3 Cu3 Cu2 47.92(18) . . ? C4 Cu3 Cu2 46.12(15) 6_556 . ? N4 C1 C1 0.0(7) 5_666 5_666 ? N4 C1 Cu3 177.2(9) 5_666 . ? C1 C1 Cu3 177.2(9) 5_666 . ? N1 C2 Cu3 173.9(6) . 5_665 ? N2 C3 Cu2 172.6(6) . . ? N2 C3 Cu3 115.0(6) . . ? Cu2 C3 Cu3 72.0(2) . . ? N3 C4 Cu2 171.3(7) . 6_656 ? N3 C4 Cu3 118.8(6) . 6_656 ? Cu2 C4 Cu3 67.24(19) 6_656 6_656 ? C2 N1 Cu1 175.3(6) . . ? C3 N2 Cu1 171.7(6) . . ? C4 N3 Cu1 175.9(7) . . ? Cu2 Br1 Cu2 92.53(5) . 7_575 ? Cu2 Br2 Cu2 86.02(4) 7_575 . ? _diffrn_measured_fraction_theta_max 0.996 _diffrn_reflns_theta_full 26.37 _diffrn_measured_fraction_theta_full 0.996 _refine_diff_density_max 1.226 _refine_diff_density_min -0.968 _refine_diff_density_rms 0.157 #---------------------------------------------- # SQUEEZE RESULTS loop_ _platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons 1 0.077 0.566 -0.032 2031.7 376.9 _platon_squeeze_details . #---------------------------------------------- # Attachment '- 2.cif_R1.txt' data_2 _database_code_depnum_ccdc_archive 'CCDC 853498' #TrackingRef '- 2.cif_R1.txt' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C29 H39 Br2 Cu7 N14' _chemical_formula_sum 'C29 H39 Br2 Cu7 N14' _chemical_formula_weight 1188.34 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Br Br -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 7.0962(2) _cell_length_b 12.4549(7) _cell_length_c 13.1580(5) _cell_angle_alpha 68.160(4) _cell_angle_beta 83.115(3) _cell_angle_gamma 81.834(3) _cell_volume 1065.68(8) _cell_formula_units_Z 1 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used ? _cell_measurement_theta_min ? _cell_measurement_theta_max ? _exptl_crystal_description prism _exptl_crystal_colour colorless _exptl_crystal_size_max 0.42 _exptl_crystal_size_mid 0.30 _exptl_crystal_size_min 0.20 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.852 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 584 _exptl_absorpt_coefficient_mu 5.339 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.2456 _exptl_absorpt_correction_T_max 1.0000 _exptl_absorpt_process_details ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. ; _exptl_special_details ; ? ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ? _diffrn_measurement_method ? _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 7154 _diffrn_reflns_av_R_equivalents 0.0309 _diffrn_reflns_av_sigmaI/netI 0.0508 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 6 _diffrn_reflns_limit_k_min -15 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_l_min -16 _diffrn_reflns_limit_l_max 16 _diffrn_reflns_theta_min 2.84 _diffrn_reflns_theta_max 26.37 _reflns_number_total 4353 _reflns_number_gt 2860 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0925P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens ? _refine_ls_hydrogen_treatment ? _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 4353 _refine_ls_number_parameters 115 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0735 _refine_ls_R_factor_gt 0.0537 _refine_ls_wR_factor_ref 0.1687 _refine_ls_wR_factor_gt 0.1558 _refine_ls_goodness_of_fit_ref 1.007 _refine_ls_restrained_S_all 1.007 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.5000 1.5000 0.5000 0.1324(9) Uani 1 2 d S . . Cu2 Cu 0.31771(11) 0.97902(8) 0.25108(8) 0.0677(3) Uani 1 1 d . . . Cu3 Cu 0.48033(12) 1.36916(7) 0.19657(6) 0.0632(3) Uani 1 1 d . . . Cu4 Cu 0.68601(11) 0.93300(8) 0.16225(7) 0.0682(3) Uani 1 1 d . . . Br1 Br 0.51204(9) 0.79144(6) 0.33805(5) 0.0615(2) Uani 1 1 d . . . C1 C 0.5047(10) 1.4482(8) 0.3873(5) 0.076(2) Uani 1 1 d . . . C2 C 0.4488(9) 1.2114(6) 0.2269(5) 0.0551(15) Uani 1 1 d . . . C3 C 1.0772(8) 0.9506(6) 0.2233(6) 0.0655(18) Uani 1 1 d . . . C4 C 0.5378(8) 0.9831(6) 0.0375(4) 0.0586(14) Uani 0.50 1 d P . . C5 C 0.4931(10) 1.4715(6) 0.0445(4) 0.0692(17) Uani 0.50 1 d P . . N1 N 0.4955(10) 1.4187(6) 0.3155(5) 0.0825(17) Uani 1 1 d . . . N2 N 0.4122(8) 1.1223(7) 0.2379(5) 0.0773(17) Uani 1 1 d . . . N3 N 0.9315(10) 0.9419(6) 0.2020(6) 0.0859(18) Uani 1 1 d . . . N4 N 0.5378(8) 0.9831(6) 0.0375(4) 0.0586(14) Uani 0.50 1 d P . . N5 N 0.4931(10) 1.4715(6) 0.0445(4) 0.0692(17) Uani 0.50 1 d P . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.1043(11) 0.233(3) 0.1106(13) -0.1188(17) 0.0002(10) -0.0281(14) Cu2 0.0520(5) 0.0570(6) 0.0974(7) -0.0276(5) -0.0132(4) -0.0111(4) Cu3 0.0776(5) 0.0567(5) 0.0622(5) -0.0261(4) -0.0093(4) -0.0130(4) Cu4 0.0565(5) 0.0773(7) 0.0751(6) -0.0274(5) -0.0170(4) -0.0108(4) Br1 0.0615(4) 0.0531(4) 0.0617(4) -0.0107(3) -0.0079(3) -0.0043(3) C1 0.087(5) 0.114(7) 0.048(4) -0.052(4) -0.009(3) -0.014(4) C2 0.062(4) 0.053(4) 0.065(4) -0.032(3) -0.008(3) -0.020(3) C3 0.029(3) 0.056(4) 0.113(5) -0.025(4) -0.020(3) -0.012(3) C4 0.055(3) 0.062(4) 0.055(4) -0.011(3) -0.007(2) -0.019(3) C5 0.105(5) 0.063(4) 0.055(3) -0.029(3) -0.011(4) -0.030(4) N1 0.111(5) 0.058(4) 0.073(4) -0.016(3) -0.013(3) -0.010(3) N2 0.069(3) 0.096(5) 0.063(4) -0.024(3) -0.021(3) 0.006(3) N3 0.088(4) 0.069(5) 0.096(5) -0.021(4) -0.012(3) -0.010(3) N4 0.055(3) 0.062(4) 0.055(4) -0.011(3) -0.007(2) -0.019(3) N5 0.105(5) 0.063(4) 0.055(3) -0.029(3) -0.011(4) -0.030(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 C1 1.820(6) . ? Cu1 C1 1.820(6) 2_686 ? Cu2 C3 1.894(5) 1_455 ? Cu2 N2 1.935(8) . ? Cu2 Br1 2.4786(11) . ? Cu2 Cu4 2.8046(12) . ? Cu3 C2 1.895(7) . ? Cu3 N1 1.902(7) . ? Cu3 C5 1.931(6) . ? Cu4 N3 1.907(7) . ? Cu4 C4 1.912(5) . ? Cu4 Br1 2.6235(11) . ? C1 N1 1.144(8) . ? C2 N2 1.128(9) . ? C3 N3 1.133(8) . ? C3 Cu2 1.894(5) 1_655 ? C4 N4 1.091(10) 2_675 ? C4 C4 1.091(10) 2_675 ? C5 N5 1.122(11) 2_685 ? C5 C5 1.122(11) 2_685 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 Cu1 C1 180 . 2_686 ? C3 Cu2 N2 130.7(3) 1_455 . ? C3 Cu2 Br1 109.6(2) 1_455 . ? N2 Cu2 Br1 119.23(17) . . ? C3 Cu2 Cu4 130.7(2) 1_455 . ? N2 Cu2 Cu4 83.10(18) . . ? Br1 Cu2 Cu4 59.16(3) . . ? C2 Cu3 N1 119.1(3) . . ? C2 Cu3 C5 117.3(3) . . ? N1 Cu3 C5 123.6(3) . . ? N3 Cu4 C4 141.1(3) . . ? N3 Cu4 Br1 106.7(2) . . ? C4 Cu4 Br1 112.02(17) . . ? N3 Cu4 Cu2 131.4(2) . . ? C4 Cu4 Cu2 77.53(18) . . ? Br1 Cu4 Cu2 54.21(3) . . ? Cu2 Br1 Cu4 66.62(3) . . ? N1 C1 Cu1 175.5(7) . . ? N2 C2 Cu3 172.0(6) . . ? N3 C3 Cu2 175.0(7) . 1_655 ? N4 C4 C4 0.0(5) 2_675 2_675 ? N4 C4 Cu4 175.1(7) 2_675 . ? C4 C4 Cu4 175.1(7) 2_675 . ? N5 C5 C5 0.0(13) 2_685 2_685 ? N5 C5 Cu3 177.3(10) 2_685 . ? C5 C5 Cu3 177.3(10) 2_685 . ? C1 N1 Cu3 179.8(7) . . ? C2 N2 Cu2 172.8(6) . . ? C3 N3 Cu4 177.9(7) . . ? _diffrn_measured_fraction_theta_max 0.999 _diffrn_reflns_theta_full 26.37 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 0.673 _refine_diff_density_min -0.548 _refine_diff_density_rms 0.111 #------------------------------------------------ # SQUEEZE RESULTS loop_ _platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons 1 -0.006 0.004 0.471 582.9 179.7 _platon_squeeze_details . #-------------------------------------------------